华东师范大学学报(教育科学版) ›› 2025, Vol. 43 ›› Issue (2): 34-48.doi: 10.16382/j.cnki.1000-5560.2025.02.004

• 学习科学 • 上一篇    下一篇

学会提问:大学生与生成式人工智能协同学习模式的研究

何珊云, 沈演   

  1. 浙江大学教育学院,杭州 310058
  • 出版日期:2025-02-01 发布日期:2025-01-18
  • 基金资助:
    浙江省普通本科高校“十四五”教学改革项目“促进大学生合作问题解决能力:项目化学习合作模式的探究”(jg20220006)。

Learn to Question: Study on the Pattern of Undergraduates-GAI Collaborative Learning

Shanyun He, Yan Shen   

  1. College of Education, Zhejiang University, Hangzhou 310058, China
  • Online:2025-02-01 Published:2025-01-18

摘要:

以ChatGPT为代表的生成式人工智能的问世,给传统的学习模式带来了巨大的机遇与挑战。学生如何运用生成式人工智能促进学习成为教育教学改革亟待探索的问题。本研究在大学生课程学习过程中引入GAI,对学生与GAI的话语类型、提问水平、提问策略以及自我报告进行编码分析,探究了大学课堂中学生如何与GAI进行协同学习。研究发现,在学生与GAI的对话中,学生是对话的发起主体,单个对话构成的对话单元居多,持续性的讨论较少。学生话语主要以初始提问、拓展提问和改述提问为主,评价和继续指令话语较少。同时学生提问的认知水平较低,以知识水平、理解水平提问为主,提问策略单一,较少使用角色提问、材料提问、方案提问等策略。在不同任务阶段、不同使用经验的学生与GAI的对话存在差异性,在任务后期人智之间展开更高频、更持续的互动对话,且提问认知水平更高、提问策略使用更熟练。使用GAI经验越丰富的学生产生更多的高认知水平对话。在呈现出不同话语特征的对话过程中,学生对在大学课堂教学中引入GAI整体上持积极态度但有所分化。学生普遍认为,GAI能够积极地辅助学习,具有回应优势、能够为学生提供信息价值、处理多类任务和促进学生能力发展,但同时也存在技术局限,引发对学生主体、学习评价和教育生态的挑战。在此基础上,本研究从提供提问训练、丰富提问场景、加强回答反思三个方面为进一步在课堂教学过程中引入生成性人工智能提供了有效的建议。

关键词: 生成式人工智能, 对话, 提问, 项目化学习

Abstract:

The advent of Generative Artificial Intelligence(GAI) represented by ChatGPT has challenged the traditional learning. How students learn through GAI tends to be an urgent problem to be explored in the current education and teaching reform. This research analyses the dialogues in class between undergraduate and GAI by coding discourse types, questioning levels, questioning strategies and students’ self report to explore the learning model of human-artificial intelligence collaboration. It is found that in student-GAI dialogues dominated by students, there are more single round conversations and less continuous discussions around a topic. The main types of students’ discourse are initial questioning, extended questioning and rephrasing questioning, while the evaluation and continuing instruction discourses are less. What’s more, students’cognitive level of questioning is low, focusing on knowledge level questioning and comprehension level questioning. The using of questioning strategies is unfamiliar and students seldom use role questioning, material questioning and scheme questioning. In addition, it is discovered that different task stages and different experience both lead to different conversation situation between students and GAI. With the development of task solving, there are more frequent and sustained dialogues, along with the deeper cognitive level and more proficient using of questioning strategies. Meanwhile, students with more experience in using GAI generate more dialogues with high cognitive level. In student-GAI dialogues representing different characteristics, though there are different opinions towards using GAI in class teaching, most of the students hold a positive attitude. In students’ perception, GAI has the advantage in generating responses, furnishing valuable information, handling various types of tasks and fostering the development of student abilities, thereby assisting students in learning. But at the same time, GAI faces challenges related to technical limitations, raising concerns about student development, learning assessment, and overall educational ecosystem. According to the findings of the research, our study provides effective suggestions for further introducing GAI into classroom teaching from three aspects: providing question guidance, enriching question scenes and strengthening reflection of GAI response.

Key words: Generative Artificial Intelligence, dialogue, raise a question, Project-Based Learning