学科变革与学科建设

计算教育学视域下的ChatGPT:内涵、主题、反思与挑战

  • 郑永和 ,
  • 周丹华 ,
  • 张永和 ,
  • 田雪葳 ,
  • 王晶莹 ,
  • 郑一
展开
  • 1. 北京师范大学科学教育研究院, 北京 100875
    2. 深圳大学教育学部, 深圳 518060
    3. 青岛大学师范学院, 青岛 266071
    4. 民航总医院, 北京 100123

网络出版日期: 2023-06-25

基金资助

国家自然科学基金项目“学习环境对中学生全球素养的影响机制与循证决策研究:基于机器学习的关联规则挖掘”(72074031);国家社会科学基金重大项目“深入推进科技体制改革与完善国家科技治理体系研究”(21ZDA017)

ChatGPT from the Perspective of Computational Education: Connotation, Theme, Reflection, and Challenge

  • Yonghe Zheng ,
  • Danhua Zhou ,
  • Yonghe Zhang ,
  • Xuewei Tian ,
  • Jingying Wang ,
  • Yi Zheng
Expand
  • 1. Research Institute of Science Education, Beijing Normal University, Beijing 100875, China
    2. Faculty of Education, Shenzhen University, Shenzhen Guangdong 518060, China
    3. Normal College, Qingdao University, Qingdao Shandong 266071, China
    4. Civil Aviation General Hospital, Beijing 100123, China

Online published: 2023-06-25

摘要

以ChatGPT为代表的生成式人工智能技术进阶推动了计算教育时代数据密集型范式的转型升级,并将计算教育学推向发展关键期。本文首先探讨以ChatGPT为代表的生成式人工智能大模型的价值内涵,从而揭示人工智能进阶推动计算教育学范式升级的要旨。通过使用社会网络分析和数据挖掘方法探讨“师-生-机”知识生成所涌现的教育研究主题,并根据核心领域关系图谱从技术突破、学生学习、教师教学和学校教育四个方面解析学校场域中“师-生-机”多主体研究共同推进计算教育学研究的纵深发展,由此勾勒出强算法算力驱动计算教育学迭代的人机共融的多元化研究图景。再进一步反思ChatGPT教育应用的工具而非目的性,ChatGPT作为一种协助写作的技术手段而非负责任的主体;作为教学的增强和补充方式而非取代教师角色;配合辅助学生学习而不可产生过度依赖。最后从理论建构与决策赋能方面探讨ChatGPT带来计算教育学发展的关键挑战,即探索基于教育计算的基础理论建构、推进计算教育学的结构规则演进、践行计算教育学的环境构建与应用实践、提升教师能力达成教育计算的育人取向、防范智能应用数据的隐私与偏见风险。

本文引用格式

郑永和 , 周丹华 , 张永和 , 田雪葳 , 王晶莹 , 郑一 . 计算教育学视域下的ChatGPT:内涵、主题、反思与挑战[J]. 华东师范大学学报(教育科学版), 2023 , 41(7) : 91 -102 . DOI: 10.16382/j.cnki.1000-5560.2023.07.009

Abstract

The advancement of artificial intelligence technology, represented by ChatGPT, has driven the transformation and upgrading of data-intensive paradigms in the era of computational education, and pushed computational education towards a critical period of development. This article first explores the value connotation of the generative artificial intelligence model represented by ChatGPT, in order to reveal the essence of promoting the upgrading of computational education paradigm through the advancement of artificial intelligence. Secondly, we explore the emerging educational research themes of teacher-student-machine knowledge generation through social network analysis and data mining, and analyze the multi-agent research of teacher student machine in the school field from four aspects: technological breakthroughs, student learning, teacher teaching, and school education based on the core domain relationship graph to jointly promote the in-depth development of computational education research, which outlines a diversified research landscape of human-machine integration driven by strong algorithmic computing power in computational education iterations. We further reflect on ChatGPT’s educational application as a tool rather than the ultimate goal, that is, ChatGPT serves as a technical means to assist writing rather than a responsible subject, as an enhancement and supplement to teaching rather than replacing the role of a teacher, and it is required to cooperate with assisting students in learning and not become overly dependent. Finally, we explore the key challenges that ChatGPT brings to the development of computational education from the perspectives of theoretical construction and decision-making empowerment, namely exploring the basic theoretical construction based on educational computing, promoting the evolution of structural rules in computational education, practicing the environmental construction and application practice of computational education, enhancing teachers’ abilities to achieve educational orientation in educational computing, and preventing privacy and bias risks of intelligent application data.

参考文献

null 冯雨奂 ChatGPT在教育领域的应用价值、潜在伦理风险与治理路径 思想理论教育 2023 04 26 32 冯雨奂. (2023). ChatGPT在教育领域的应用价值、潜在伦理风险与治理路径. 思想理论教育,(04),26—32.
null 黄荣, 吕尚彬 ChatGPT: 本体、影响及趋势 当代传播 2023 02 33 38+44 黄荣, 吕尚彬. (2023). ChatGPT: 本体、影响及趋势. 当代传播,(02),33—38+44.
null 贾维辰, 彭俊, & 任英杰 计算教育学国内发展现状分析与未来展望——基于语言模型和自然语言生成技术 远程教育杂志 2021 39 03 42 51 贾维辰, 彭俊, & 任英杰. (2021). 计算教育学国内发展现状分析与未来展望—基于语言模型和自然语言生成技术. 远程教育杂志,39(03),42—51.
null 刘铁芳. (2017). 追寻生命的整全——个体成人的教育哲学阐释. 北京: 高等教育出版社.
null 卢宇, 余京蕾, 陈鹏鹤, 李沐云 生成式人工智能的教育应用与展望——以ChatGPT系统为例 中国远程教育 2023 43 04 24 31+51 卢宇, 余京蕾, 陈鹏鹤, 李沐云. (2023). 生成式人工智能的教育应用与展望—以ChatGPT系统为例. 中国远程教育,43(04),24—31+51.
null 谭维智 计算社会科学时代需要什么教育学——兼与《计算教育学: 内涵与进路》作者商榷 教育研究 2020 41 11 46 60 谭维智. (2020). 计算社会科学时代需要什么教育学—兼与《计算教育学: 内涵与进路》作者商榷. 教育研究,41(11),46—60.
null 王晶莹, 张永和, 宋倩茹, 马勇军 计算教育学: 研究动态与应用场景 开放教育研究 2020 26 04 59 66 王晶莹, 张永和, 宋倩茹, 马勇军. (2020). 计算教育学: 研究动态与应用场景. 开放教育研究,26(04),59—66.
null 王佑镁, 王旦, 梁炜怡, 柳晨晨 “阿拉丁神灯”还是“潘多拉魔盒”: ChatGPT教育应用的潜能与风险 现代远程教育研究 2023 35 2 11 19 王佑镁, 王旦, 梁炜怡, 柳晨晨. (2023). “阿拉丁神灯”还是“潘多拉魔盒”: ChatGPT教育应用的潜能与风险. 现代远程教育研究,35(2),11—19.
null 吴刚 学科想象与理论生长——兼论计算教育学的错觉 教育研究 2021 42 03 76 89 吴刚. (2021). 学科想象与理论生长—兼论计算教育学的错觉. 教育研究,42(03),76—89.
null 夏立新 ChatGPT与高等教育变革(笔谈)之ChatGPT对教育的多重变 国家行政学院学报 2023 03 9 12 夏立新. (2023). ChatGPT与高等教育变革(笔谈)之ChatGPT对教育的多重变. 国家行政学院学报,(03),9—12.
null 肖君, 梁晓彤, 黄龙翔, 潘志敏 无缝学习的焦点与趋势 中国远程教育 2021 02 66 75 肖君, 梁晓彤, 黄龙翔, 潘志敏. (2021). 无缝学习的焦点与趋势. 中国远程教育,(02),66—75.
null 杨俊蕾 ChatGPT: 生成式 AI 对弈“苏格拉底之问” 上海师范大学学报(哲学社会科学版) 2023 02 14 21 杨俊蕾. (2023). ChatGPT: 生成式 AI 对弈“苏格拉底之问”. 上海师范大学学报(哲学社会科学版),(02),14—21.
null 叶启政. (2018). 实证的迷思: 重估社会科学经验研究. 北京: 生活?读书?新知三联书店.
null 袁振国 实证研究是教育学走向科学的必要途径 华东师范大学学报 (教育科学版) 2017 35 03 4 17+168 袁振国. (2017). 实证研究是教育学走向科学的必要途径. 华东师范大学学报 (教育科学版),35(03),4—17+168.
null 张乐乐, 顾小清 多模态数据支持的课堂教学行为分析模型与实践框架 开放教育研究 2022 28(60 101 110 张乐乐, 顾小清. (2022). 多模态数据支持的课堂教学行为分析模型与实践框架. 开放教育研究,28(60,101—110.
null 张乐乐, 顾小清 人工智能在教育领域创新扩散的影响因素研究——基于TOE理论框架 中国远程教育 2023 43 02 54 82 张乐乐, 顾小清. (2023). 人工智能在教育领域创新扩散的影响因素研究—基于TOE理论框架. 中国远程教育,43(02),54—82.
null 张晓震. (2023). ChatGPT带给教育的不是危机而是契机. 现代教育报, 2023−02−26.
null 张志华, 王丽, 季凯 大数据赋能新时代教育评价转型: 技术逻辑、现实困境与实现路径 电化教育研究 2022 43 05 33 39 张志华, 王丽, 季凯. (2022). 大数据赋能新时代教育评价转型: 技术逻辑、现实困境与实现路径. 电化教育研究,43(05),33—39.
null 张志祯等 大型语言模型会催生学校结构性变革吗?——基于ChatGPT的前瞻性分析 中国远程教育 2023 43 04 32 41 张志祯等. (2023). 大型语言模型会催生学校结构性变革吗?—基于ChatGPT的前瞻性分析. 中国远程教育,43(04),32—41.
null 赵朝阳, 朱贵波, &王金桥 ChatGPT给语言大模型带来的启示和多模态大模型新的发展思路 数据分析与知识发现 2023 75 3 26 35 赵朝阳, 朱贵波, &王金桥. (2023). ChatGPT给语言大模型带来的启示和多模态大模型新的发展思路. 数据分析与知识发现,75(3),26—35.
null 郑永和等 计算教育学论纲: 立场、范式与体系 华东师范大学学报(教育科学版) 2020 06 1 19 郑永和等. (2020). 计算教育学论纲: 立场、范式与体系. 华东师范大学学报(教育科学版),(06),1—19.
null 钟秉林等.(2023).ChatGPT对教育的挑战(笔谈). 重庆高教研究 , (03): 3-25.
null 周洪宇, 李宇阳 ChatGPT 对教育生态的冲击及应对策略 新疆师范大学学报(哲学 社会科学版) 2023 44 4 134 144 周洪宇, 李宇阳. (2023). ChatGPT 对教育生态的冲击及应对策略. 新疆师范大学学报(哲学 社会科学版),44(4),134—144.
null Alkaissi, H., & McFarlane, S. I Artificial Hallucinations in ChatGPT: Implications in Scientific Writing Cureus 2023 15 2 e35179 Alkaissi, H., & McFarlane, S. I. (2023). Artificial Hallucinations in ChatGPT: Implications in Scientific Writing. Cureus, 15(2), e35179.
null Al-Worafi, Y. M., Hermansyah, A., Goh, K. W., & Ming, L. C. (2023). Artificial Intelligence Use in University: Should We Ban ChatGPT ?. Preprints: 2023020400.
null Baidoo-Anu, D., & Owusu, A. L. (2023). Education in the Era of Generative Artificial Intelligence (AI): Understanding the Potential Benefits of ChatGPT in Promoting Teaching and Learning. Retrieved from: https://ssrn.com/abstract=4337484.
null Basic, Z., Banovac, A., Kruzic, I., & Jerkovic, I. (2023). Better by you, better than me, chatgpt3 as writing assistance in students essays. Retrieved from: https://doi.org/10.48550/arXiv.2302.04536.
null García-Pe?alvo, F. J The perception of Artificial Intelligence in educational contexts after the launch of ChatGPT: Disruption or Panic? Education in the Knowledge Society (EKS) 2023 24 e31279 García-Pe?alvo, F. J. (2023). The perception of Artificial Intelligence in educational contexts after the launch of ChatGPT: Disruption or Panic?. Education in the Knowledge Society (EKS), 24, e31279.
null Gilson, A., Safranek, C., Huang, T., Socrates, V., Chi, L., Taylor, R. A., & Chartash, D. (2022). How Does ChatGPT Perform on the Medical Licensing Exams? The Implications of Large Language Models for Medical Education and Knowledge Assessment.Retrieved from: https://www.medrxiv.org/content/10.1101/2022.12.23.22283901v1.
null Gordijn, B., & Have, H. t. ChatGPT: evolution or revolution? Medicine, Health Care and Philosophy 2023 26 1 2 Gordijn, B., & Have, H. t. (2023). ChatGPT: evolution or revolution?. Medicine, Health Care and Philosophy, 26, 1—2.
null Graf, A., & Bernardi, R. E. (2023). ChatGPT in Research: Balancing Ethics, Transparency and Advancement. Neuroscience. Online ahead of print.
null Jalil, S., Rafi, S., LaToza, T. D., Moran, K., & Lam, W. (2023). ChatGPT and Software Testing Education: Promises & Perils. Retrieved from: https://arxiv.org/abs/2302.03287.
null Kasneci, E., Seßler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer, F., … Kasneci, G. (2023). ChatGPT for Good? On Opportunities and Challenges of Large Language Models for Education. Retrieved from: https://doi.org/10.35542/osf.io/5er8f.
null Lazer, D., Pentland, A., Adamic, L., & Aral, S Life in the network: The coming age of computational social science Science 2009 5915 721 723 Lazer, D., Pentland, A., Adamic, L., & Aral, S. (2009). Life in the network: The coming age of computational social science. Science, (5915), 721—723.
null Mhlanga, D. (2023). Open AI in Education, the Responsible and Ethical Use of ChatGPT Towards Lifelong Learning. Retrieved from: https://ssrn.com/abstract=4354422 or http://dx.doi.org/10.2139/ssrn.4354422.
null Opara, E. C., Theresa, A. M., & Aduke, T. C. (2023). ChatGPT for Teaching, Learning and Research: Prospects and Challenges. Retrieved from: https://www.researchgate.net/publication/368916563_ChatGPT_for_Teaching_Learning_and_Research_Prospects_and_Challenges.
null Shen, Y., Heacock, L., Elias, J., Hentel, K. D., Reig, B., Shih, G., & Moy, L ChatGPT and Other Large Language Models Are Double-edged Swords Radiology 2023 3 15 23 Shen, Y., Heacock, L., Elias, J., Hentel, K. D., Reig, B., Shih, G., & Moy, L. (2023). ChatGPT and Other Large Language Models Are Double-edged Swords. Radiology, 3, 15—23.
null Stokel-Walker, C ChatGPT listed as author on research papers Nature 2023 613 1 620 621 Stokel-Walker, C. (2023). ChatGPT listed as author on research papers. Nature, 613(1), 620—621.
null Tate, T. P., Doroudi, S., Ritchie, D., Xu, Y., & uci, m. w. (2023). Educational Research and AI-Generated Writing: Confronting the Coming Tsunami. Retrieved from: https://doi.org/10.35542/osf.io/4mec3.
null Whitehill, J., Serpell, Z., Lin, Y. C., Foster, A., & Movellan, J The Faces of Engagement: Automatic Recognition of Student Engagement from Facial Expressions IEEE Transactions on Affective Computing 2014 5 01 86 98 Whitehill, J., Serpell, Z., Lin, Y. C., Foster, A., & Movellan, J. (2014). The Faces of Engagement: Automatic Recognition of Student Engagement from Facial Expressions. IEEE Transactions on Affective Computing, 5(01), 86—98.
null Williamson, B. , Macgilchrist, F. , & Potter, J. (2023). Re-examining AI, automation and datafication in education. Learning, Media and Technology, 48, (01): 21-30.
null Zhai, X. (2022). ChatGPT User Experience: Implications for Education. Retrieved from: https://ssrn.com/abstract=4312418 or http://dx.doi.org/10.2139/ssrn.4312418.
null Zhai, X. (2023). ChatGPT for Next Generation Science Learning. Retrieved from: https://ssrn.com/abstract=4331313 or http://dx.doi.org/10.2139/ssrn.4331313.
null Zhai, X., Krajcik, J. & Pellegrino, J. W On the Validity of Machine Learning-based Next Generation Science Assessments: A Validity Inferential Network Journal of Science Education and Technology 2021 30 298 312 Zhai, X., Krajcik, J. & Pellegrino, J. W. (2021). On the Validity of Machine Learning-based Next Generation Science Assessments: A Validity Inferential Network. Journal of Science Education and Technology, 30, 298—312.
文章导航

/