方法

中国教育实证研究中的定量方法:五年应用述评

  • 吕晶
展开
  • 华东师范大学教育学部,上海 200062

网络出版日期: 2020-09-15

The Quantitative Methods in Education Empirical Research in China: A Review on Five Years’ Application

  • Lyu Jing
Expand
  • Faculty of Education, East China Normal University, Shanghai 200062, China

Online published: 2020-09-15

摘要

自2015年“全国首届教育实证研究论坛”召开后,中国教育科学领域兴起了一股定量研究方法的应用之风。然而,由于受到研究水平、研究环境的制约,有关量化研究和混合研究中定量方法的应用和方法论的研究仍是我国教育研究中的一个薄弱项,学术界还没有对教育实证研究中的定量方法的应用形成全面客观的认识。即便陆续有学者对定量方法在我国的应用情况做了综述研究,却多是对统计数据的简单描述与概括,针对具体问题的详细分析几乎没有。更没有针对实际方法误用的纠正,无法切实帮助到具体方法的应用者。因此,详细地梳理、分析定量研究方法在我国的实际应用情况,并尝试对其不足之处给出较为具体的建议,对定量研究方法在我国的发展与成熟具有重要的作用与价值。本文以2015—2019年在11本教育综合类中文社会科学引文索引(CSSCI)期刊中应用定量方法的论文为研究对象,总结了定量研究方法五年来在我国教育实证研究中的应用现状,并针对具体问题提出对策与建议;整理了一些常见的定量研究方法的误用情况,并针对这些误用给出了正确应用的建议;分析了定量研究方法在教育实证研究中的使用趋势。

本文引用格式

吕晶 . 中国教育实证研究中的定量方法:五年应用述评[J]. 华东师范大学学报(教育科学版), 2020 , 38(9) : 36 -55 . DOI: 10.16382/j.cnki.1000-5560.2020.09.003

Abstract

Since the “National Educational Empirical Research Forum” was first held in 2015, the application of quantitative methods in the field of education science in China has been popular. However, due to the limitation of research level and research environment, investigating the methodology of quantitative methods and applying quantitative methods in quantitative or mixed research are still a weak point in educational research in China. The academic community has not formed a comprehensive and objective understanding of the application of quantitative methods in education empirical research. Even though some scholars review the application of quantitative methods in education empirical research in China, they only describe and summarize the statistical data, and there is limited analysis on the specific problems with the application. Moreover, there is no correction for the misuse of quantitative methods, which cannot help the applicators effectively. Therefore, efforts to analyze the practical application of quantitative methods in China and give more specific suggestions on its shortcomings are of great significance for the development of quantitative methods in China. This paper examined the articles published in 11 comprehensive education journals included in the Chinese Social Science Citation Index (CSSCI) from 2015 to 2019 as the objects. It summarized the application of quantitative methods in educational empirical research in China in the past five years, and provided suggested solutions to some specific issues. Also, it presented the misuse of some widely used quantitative methods, and made the correct application suggestions; analyzed the future trend of applying quantitative methods in educational empirical research in China.

参考文献

邓猛, 潘剑芳. (2002). 论教育研究中的混合方法设计. 教育研究与实验, (03),56-61
付瑛, 周谊. (2004). 教育研究方法中定性研究与定量研究的比较. 中华医学教育探索杂志,3(02),9-11+21
国务院. (2017). 新一代人工智能发展规划. 取自中华人民共和国中央人民政府网站(2017年7月20日): http://www.gov.cn/home/2017-07/20/content_5212053.htm.
高潇怡. (2010). 论混合方法在高等教育研究中的具体应用. 国内高等教育教学研究动态, (03),9
何哲. (2015). 大数据战略上升为国家战略. 取自人民网(2015年11月8日): http://politics.people.com.cn/n/2015/1108/c1001-27790239.html.
黎荷芳. (2001). 浅析教育量化研究存在的问题及其正确应用. 吉林教育科学, (06),36-39
刘建设. (1999). 对我国教育量化研究的若干思考. 北京邮电大学学报(社会科学版), (02),22-25
卢克. (2016). 多层次模型(郑冰岛译). 上海: 上海人民出版社.
李宪印, 张宝芳, 姜丽萍. (2019). 大学生创新行为的构成因素及其实证研究. 教育研究, (04),91-100
诺克, 杨. (2012). 社会网络分析(李兰译). 上海: 格致出版社.
佟庆伟. (2004). 论量化研究方法在教育科研中的应用. 教育探索, (11),24-25
田虎伟. (2007a). 混和方法研究——美国教育研究方法的一种新范式. 比较教育研究,28(01),12-17
唐涌. (2015). 混合方法研究——美国教育研究方法论的新取向. 外国教育研究, (02),12-21
吴战杰, 秦健. (2003). Agent技术及其在网络教育中的应用研究. 电化教育研究, (03),32-36
谢美华. (2005). 浅评定量研究方法及其在我国教育研究中的应用. 南昌: 江西师范大学硕士学位论文.
向蓉. (2019). 研究方法的发展及其在基础教育研究中的应用. 现代教育科学, (07),33-39
易红梅, 何婧, 张林秀. (2019). 有条件的现金转移支持承诺对贫困学生高中完成情况的影响研究. 北京大学教育评论,17(02),149-166
余胜泉. (2018). 人工智能+教育. 北京: 北京师范大学出版社.
袁振国. (2017). 实证研究是教育学走向科学的必要途径. 华东师范大学学报(教育科学版),35(03),4-17+168
张东辉. (2013). 美国教育研究方法论的最新进展:混合法研究的兴起与应用. 教育研究与实验, (04),9-12
张绘. (2012). 混合研究方法的形成、研究设计与应用价值——对“第三种教育研究范式”的探析. 复旦教育论坛, (05),53-59
朱军文, 马银琦. (2020). 教育实证研究这五年: 特征、趋势及展望. 华东师范大学学报(教育科学版), (9),16-35
Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to Meta-Analysis. United Kingdom: Wiley Press.
Cheung, M. W-L. (2015). Meta-Analysis: A Structural Equation Modeling Approach (pp. 1- 152). New York: Wiley Press.
Creswell, J. W. (2015). A Concise Introduction to Mixed Methods Research. Sydney: SAGE Publications.
Creswell, J. W., & Clark, P. V. L. (2018). Designing and Conducting Mixed Methods Research. Sydney: SAGE Publications.
Geldhof, G. J., Preacher, K. J., & Zyphur, M. J. (2014). Reliability estimation in a multilevel confirmatory factor analysis framework. Psychological Methods, 19(1), 72-91
Gilbert, N. (2020). Agent-Based Models, Second Edition. London: SAGE Publications.
Greene, J. C. (2012). Engaging critical issues in social inquiry by mixing methods. American Behavioral Scientist, 56, 755-773
Hennig, C., Meila, M., Murtagh, F., & Rocci, R. (2016). Handbook of Cluster Analysis. Boca Raton: CRC Press.
Lv, J., & Maeda, Y. (2020). Evaluation of the efficacy of meta-analytic structural equation modeling with missing correlations. Structural Equation Modeling: A Multidisciplinary Journal, 27(3), 414-437
Lv, J., Liu, Q., Zeng, X., OEI, T. P. S., Liu, Y., Xu, K., Sun, W., Hou, H., & Liu, J. (2020). The effect of four immeasurable meditations on depressive symptoms: a systematic review and meta-analysis. Clinical Psychology Review, 76, 101814
MacKinnon, D. P., & Valente, M. J. (2014). Mediation from multilevel to structural equation modeling. Annals of Nutrition and Metabolism, 65(2–3), 198-204
Mcintyre, L. J. (2003). Need to Know: Social Science Research Methods. McGram Hill: München.
Moeyaert, M. (2019). Quantitative synthesis of research evidence: multilevel meta-analysis. Behavioral Disorders, 44(4), 241-256
Muthén, B., du Toit, S.H.C., & Spisic, D. (1997). Robust Inference Using Weighted Least Squares and Quadratic Estimating Equations in Latent Variable Modeling with Categorical and Continuous Outcomes. Unpublished technical report.
Preacher, K. J., Zhang, Z., & Zyphur, M. J. (2016). Multilevel structural equation models for assessing moderation within and across levels of analysis. Psychological Methods, 21(2), 189-205
Rabe-Hesketh, S., Skrondal, A., & Zheng, X. (2007). Multilevel Structural Equation Modeling. In S. Lee (Ed.), Handbook of Latent Variable and Related Models (pp. 209–227). Amsterdam: Elsevier.
Ryu, E. (2014). Model fit evaluation in multilevel structural equation models. Frontiers in Psychology, 5, 81
Shumway, R. H., & David, S. S. (2011). Time Series Analysis and Its Applications with R Examples, Third Edition. Switzerland: Springer Science+Business Media.
Silva, B. C., Bosancianu, C. M., & Littvay, L. (2019). Multilevel Structural Equation Modeling. Germany: SAGE Publications.
Teddlie, C., & Tashakkori, A. (2012). Common “core” characteristics of mixed methods research: a review of critical issues and call for greater convergence. American Behavioral Scientist, 56, 774-788
van den Noortgate, W., & Onghena, P. (2003). Multilevel meta-analysis: a comparison with traditional meta-analytical procedures. Educational and Psychological Measurement, 65(5), 765-790
van den Noortgate, W., & Onghena, P. (2008). A multilevel meta-analysis of single-subject experimental design studies. Evidence-Based Communication Assessment and Intervention, 2(3), 142-151
van der Linden, W. J. (2016). Handbook of Item Response Theory: Volume 1, Models. Boca Raton: CRC Press.
van der Linden, W. J. (2017). Handbook of Item Response Theory: Volume 2, Statistical Tools. Boca Raton: CRC Press.
Yue, C., & Xu, X. (2020). Review of quantitative methods used in Chinese educational research, 1978-2018. ECNU Review of Education, 2(4), 515-543
文章导航

/