网络出版日期: 2021-08-04
基金资助
华东师范大学“幸福之花”基金先导项目“屏幕文化下的学习环境设计及对脑智发展影响研究”(2019ECNU-XFZH014)
版权
How is data-driven precision teaching possible? From the perspective of cultivating teacher’s data wisdom
Online published: 2021-08-04
Copyright
精准教学的教育理念已成为各国共识,智慧教育环境下海量多模态学习数据的生成也使数据驱动的精准教学范式转变成为可能,但目前运用数据解决复杂教学问题的实践存在许多挑战,其突破点在于培养教师的数据智慧。本文从教师数据智慧的角度回答了三个问题:是什么、如何培养以及有哪些影响因素。首先,数据智慧是教学实践经验、数据分析技能、学习科学理论三者的有机整合,其内涵在于数据到智慧的递进转化;在明晰数据智慧的实现路径是掌握数据探究循环的基础上,回应了“培养什么”的问题,并构建了从职前准备到职后发展的培养路径,即在职前阶段弱化学科界限、革新课程体系、创设“实境”学习环境,在职后阶段创新培训模式、组建数据实践共同体,在协作探究和反思性实践中发展集体数据智慧;最后,考虑到数据智慧的培养是一个复杂的、多方联动的动态过程,对其影响因素和作用机制进行了剖析,为教师数据智慧的培养策略提供借鉴,并提出了善用数据智慧的观点。
彭晓玲 , 吴忭 . “数据驱动的精准教学”何以可能?——基于培养教师数据智慧的视角[J]. 华东师范大学学报(教育科学版), 2021 , 39(8) : 45 -56 . DOI: 10.16382/j.cnki.1000-5560.2021.08.004
The concept of precision teaching has become an international consensus, and wisdom education environment generating huge amounts of multimodal learning also make data-driven precision teaching paradigm possible. However, there are still many challenges in the practice of using data to solve complex teaching problem, the breakthrough is to cultivate teachers’ data wisdom. This article answers three questions from the perspective of teachers’ data wisdom: what is it, how to cultivate it, and what are the influencing factors. First of all, data wisdom is the integration of teaching practice experience, data analysis skills and learning sciences. Its connotation lies in the progressive transformation from data to wisdom. On the basis of clarifying that the realization path of data wisdom is to master the cycle of data inquiry, this paper answers the question of “what” to cultivate, and constructs the cultivating path from pre-service to in-service. In the pre-service stage, we should weaken the discipline boundaries, reform the curriculum system, and create a “reality” learning environment. In the in-service stage, we should innovate training pattern, establish data practice community, and develop collective data wisdom in collaborative inquiry and reflective practice. Finally, considering that the cultivation of data wisdom is a complex and multi-lateral dynamic process, this paper analyzes the influencing factors and mechanism of data wisdom, provides a reference for the cultivation strategy of teachers' data wisdom, and puts forward the viewpoint of making good use of data wisdom.
Key words: data wisdom; teacher; precision teaching; data inquiry cycle; cultivating path
| 李士平, 赵蔚, 刘红霞. (2018). 数据驱动下的学习支持设计与实践. 电化教育研究, 39 (03), 103- 108+114. | |
| 彭红超, 祝智庭. (2018). 人机协同的数据智慧机制: 智慧教育的数据价值炼金术. 开放教育研究, (2), 41- 50. | |
| 茹秀芳. (2016). 教师循证教学能力及培养研究. 教育理论与实, (3), 58- 61. | |
| 邵炯. 大数据催生体育教学新模式. 青年报, 2016−07−13(B07) | |
| 万力勇, 黄志芳, & 黄焕. (2019). 大数据驱动的精准教学: 操作框架与实施路径. 现代教育技术, 29 (01), 32- 38. | |
| 吴忭, 彭晓玲, 胡艺龄. (2019). 教育研究的去芜存菁之路: 从多模态叙事到证据公平——美国AERA 2019年会述评. 远程教育杂志, 37 (04), 13- 23. | |
| 杨甲睿, 黄甫全. (2013). 证据型教学决策在美国: 兴起、内涵、策略及其启示. 电化教育研究, (4), 107- 113. | |
| 杨现民, 骆娇娇, 刘雅馨, 陈世超. (2017). 数据驱动教学: 大数据时代教学范式的新走向. 电化教育研究, 38 (12), 13- 20+26. | |
| 杨现民, 唐斯斯, 李冀红. (2016). 发展教育大数据: 内涵、价值和挑战. 现代远程教育研究, (1), 50- 61. | |
| 郑红苹, & 崔友兴. (2018). “互联网+ 教育” 下循证教学的理念与路径. 教育研究, (8), 16. | |
| 祝智庭 & 彭红超. (2016). 信息技术支持的高效知识教学: 激发精准教学的活力. 中国电化教育, (1), 17- 25. | |
| 祝智庭, 孙妍妍, 彭红超. (2017). 解读教育大数据的文化意蕴. 电化教育研究, 38 (01), 28- 36. | |
| Ackoff, R. L. (1989). From data to wisdom. Journal of applied systems analysis, 16 (1), 3- 9. | |
| Bellinger, G., Castro, D., & Mills, A. (2004). Data, information, knowledge, and wisdom. | |
| Boudett, K. P., City, E. A., & Murnane, R. J. (2013). Data wise: A step-by-step guide to using assessment results to improve teaching and learning. Harvard Education Press. | |
| Campaign, D. Q. (2014). Teacher Data Literacy: It’s about Time. Data Quality Campaign. Washington, DC: Author. | |
| Chen, B. (2015). From theory use to theory building in learning analytics: A commentary on “Learning analytics to support teachers during synchronous CSCL”. Journal of Learning Analytics, 2 (2), 163- 168. | |
| Coburn, C. E., & Turner, E. O. (2011). Research on data use: A framework and analysis. Measurement Interdisciplinary Research Perspectives, 9 (4), 173- 206. | |
| Collins, A., Brown, J. S., & Newman, S. E. (1987). Cognitive apprenticeship: Teaching the craft of reading, writing, and mathematics. Knowing Learning Instruction, 453- 494. | |
| Datnow, A., & Hubbard, L. (2016). Teacher capacity for and beliefs about data-driven decision making: A literature review of international research. Journal of Educational Change, 17 (1), 7- 28. | |
| Datnow, A., Park, V., & Kennedy-Lewis, B. (2013). Affordances and constraints in the context of teacher collaboration for the purpose of data use. Journal of Educational Administration, 51 (3), 341- 362. | |
| Desimone, L. M. (2009). Improving impact studies of teachers' professional development: Toward better conceptualizations and measures. Educational Researcher, 38 (3), 181- 199. | |
| Dunn, K. E., Airola, D. T., Lo, W. J., & Garrison, M. (2013). Becoming data driven: The influence of teachers’ sense of efficacy on concerns related to data-driven decision making. Journal of Experimental Education, 81 (2), 222- 241. | |
| Erickson, B., & Nosanchuk, T. (1992). Understanding data. McGraw-Hill Education (UK). | |
| Farrell, C. C., & Marsh, J. A. (2016). Contributing conditions: A qualitative comparative analysis of teachers’ instructional responses to data. Teaching and Teacher Education, 60, 398- 412. | |
| Gelderblom, G., Schildkamp, K., Pieters, J., & Ehren, M. (2016). Data-based decision making for instructional improvement in primary education. International Journal of Educational Research, 80, 1- 14. | |
| Hoogland, I., Schildkamp, K., Kleij, F. V. D., Heitink, M., Kippers, W., Veldkamp, B., & Dijkstra, A. M. (2016). Prerequisites for data-based decision making in the classroom: Research evidence and practical illustrations. Teaching and Teacher Education, 60, 377- 386. | |
| Lindsley, O. R. (1991). Precision teaching’s unique legacy from B. F. Skinner. Journal of Behavioral Education, 1 (2), 253- 266. | |
| Mandinach, E. B. (2012). A perfect time for data use: Using data-driven decision making to inform practice. Educational Psychologist, 47 (2), 71- 85. | |
| Mcnaughton, S., Mei, K. L., & Hsiao, S. (2012). Testing the effectiveness of an intervention model based on data use: a replication series across clusters of schools. School Effectiveness and School Improvement, 23 (2), 203- 228. | |
| Mudrick, N. V. (2018). Designing adaptive intelligent tutoring systems: Fostering cognitive, affective, and metacognitive self-regulated learning processes using multimodal, Multichannel Process Data. Unpublished dissertation. | |
| Pierce, R., Chick, H., Watson, J., Les, M., & Dalton, M. (2014). A statistical literacy hierarchy for interpreting educational system data. Australian Journal of Education, 58 (2), 195- 217. | |
| Reeves, T. D., & Chiang, J. L. (2018). Online interventions to promote teacher data-driven decision making: Optimizing design to maximize impact. Studies in Educational Evaluation, 59, 256- 269. | |
| Rowley, J. (2007). The wisdom hierarchy: representations of the DIKW hierarchy. Journal of information science, 33 (2), 163- 180. | |
| Schildkamp, K., Poortman, C., Luyten, H., & Ebbeler, J. (2014). Factors promoting and hindering data-based decision making in schools. School Effectiveness and School Improvement, 28, 1- 17. | |
| Schuff, D. (2018). Data science for all: a university-wide course in data literacy. In A. Deokar, A. Gupta, L. Iyer, and M. Jones (Eds.), Annals of Information Systems: Analytics and Data Science: Advances in Research and Pedagogy, Springer, 281-297. | |
| Thomas, R. S. (2007). Data Wise in Action: Stories of Schools Using Data to Improve Teaching and Learning. Harvard Education Press. Cambridge, MA. | |
| Young, V. M., & Kim, D. H. (2010). Using assessments for instructional improvement: A literature review. Education Policy Analysis Archives, 18, 1- 40. | |
| Zapatarivera, D., Zwick, R., & Vezzu, M. J. E. A. (2016). Exploring the effectiveness of a measurement error tutorial in helping teachers understand score report results. Educational Assessment, 21 (3), 215- 229. |
/
| 〈 |
|
〉 |