?

An Application of a PBL+CT Teaching Model in Primary Mathematics for Cultivating Students’ Computational Thinking——Taking “How to Enclose the Largest Area” as an Example

  • Yi Zhang ,
  • Jue Wang ,
  • ling Xie ,
  • Dandan Wang ,
  • Xing Li ,
  • Wei Mo
Expand
  • 1. School of Educational Information Technology, Faculty of Artificial Inteligence in Education, Central China Normal University, Wuhan, 430079, China
    2. Primary School attached to Huazhong University of Science and Technology, Wuhan, 430074, China
    3. School of Education, Jianghan University, Wuhan, 430056, China

Online published: 2021-08-04

Abstract

“Computational thinking” has been an important indicator for evaluating students’ high-order thinking in K-12 education in recent years. It has common thinking modes with mathematics thinking in many fields such as problem-solving. Therefore, developing computational thinking in mathematics has become a global trend. A three-layer “PBL+CT” theoretical model in primary school mathematics to develop students’ computational thinking is built. In the model, the content layer is PISA-oriented and drives teaching through the problem, the teaching layer is the mathematical model of non-programming plugged that integrates with computational thinking elements and constructs the problem-solving teaching procedure, and the goal layer is of computational thinking in relevant to the six core skills of decomposition, abstraction, algorithmic thinking, critical thinking, problem-solving, and collaborative learning. The course How to Enclose the Largest Area in primary mathematics was taken as an example, specific teaching designs and implementations in terms of the theoretical model were conducted, and the effectiveness of the model was verified in this research. Classroom observations, questionnaires, self-assessments, and interviews were used to verify the effectiveness of the model in promoting the development of computational thinking in primary students. It is found that the “PBL+CT” teaching model in primary school mathematics can significantly cultivate students’ computational thinking, especially in the fields of decomposition, algorithmic thinking, and collaborative learning. Based on the results, the research further summarizes and reflects on the mathematics teaching of “PBL+CT” to promote the development of students’ computational thinking in primary school.

Cite this article

Yi Zhang , Jue Wang , ling Xie , Dandan Wang , Xing Li , Wei Mo . An Application of a PBL+CT Teaching Model in Primary Mathematics for Cultivating Students’ Computational Thinking——Taking “How to Enclose the Largest Area” as an Example[J]. Journal of East China Normal University(Educational Sciences), 2021 , 39(8) : 70 -82 . DOI: 10.16382/j.cnki.1000-5560.2021.08.006

References

null 鲍宇, 孟凡荣, 张艳群 “阶梯式”引导的计算思维自主养成模式 电化教育研究 2015 6 87 92 鲍宇, 孟凡荣, 张艳群. (2015). “阶梯式”引导的计算思维自主养成模式. 电化教育研究,(6),87—92.
null 郭守超, 周睿, 邓常梅, 狄长艳, 周庆国 基于App Inventor和计算思维的信息技术课堂教学研究 中国电化教育 2014 3 91 96 郭守超, 周睿, 邓常梅, 狄长艳, 周庆国. (2014). 基于App Inventor和计算思维的信息技术课堂教学研究. 中国电化教育,(3),91—96.
null 胡典顺, 雷沛瑶, 刘婷 数学核心素养的测评: 基于PISA测评框架与试题设计的视角 教育测量与评价 2018 10 41 46+65 胡典顺, 雷沛瑶, 刘婷. (2018). 数学核心素养的测评: 基于PISA测评框架与试题设计的视角. 教育测量与评价,(10),41—46+65.
null 刘儒德 问题式学习: 一条集中体现建构主义思想的教学改革思路 教育理论与实践 2001 5 53 56 刘儒德. (2001). 问题式学习: 一条集中体现建构主义思想的教学改革思路. 教育理论与实践,(5),53—56.
null 任友群, 黄荣怀 高中信息技术课程标准修订说明 高中信息技术课程标准修订组 中国电化教育 2016 12 1 3 任友群, 黄荣怀. (2016). 高中信息技术课程标准修订说明 高中信息技术课程标准修订组. 中国电化教育,(12),1—3.
null 任友群, 隋丰蔚, 李锋 数字土著何以可能?——也谈计算思维进入中小学信息技术教育的必要性和可能性 中国电化教育 2016 1 1 8 任友群, 隋丰蔚, 李锋. (2016). 数字土著何以可能?—也谈计算思维进入中小学信息技术教育的必要性和可能性. 中国电化教育,(1),1—8.
null 吴刚 基于问题式学习模式(PBL)的述评 陕西教育: 高教版 2012 4 3 7 吴刚. (2012). 基于问题式学习模式(PBL)的述评. 陕西教育: 高教版,(4),3—7.
null 余胜泉, 胡翔 STEM教育理念与跨学科整合模式 开放教育研究 2015 4 13 22 余胜泉, 胡翔. (2015). STEM教育理念与跨学科整合模式. 开放教育研究,(4),13—22.
null 张蕾 面向计算思维的WPBL教学模式研究 电化教育研究 2014 3 100 105 张蕾. (2014). 面向计算思维的WPBL教学模式研究. 电化教育研究,(3),100—105.
null Barcelos, T. S., Mu?oz, R., Villarroel, R., Merino, E., & Silveira, I. F Mathematics Learning through Computational Thinking Activities: A Systematic Literature Review Journal of Universal Computer Science 2018 24 7 815 845 Barcelos, T. S., Mu?oz, R., Villarroel, R., Merino, E., & Silveira, I. F. (2018). Mathematics Learning through Computational Thinking Activities: A Systematic Literature Review. Journal of Universal Computer Science, 24(7), 815—845.
null Barr, V., & Stephenson, C Bringing computational thinking to k-12: what is involved and what is the role of the computer science education community? ACM Inroads 2011 2 1 48 54 Barr, V., & Stephenson, C. (2011). Bringing computational thinking to k-12: what is involved and what is the role of the computer science education community?. ACM Inroads, 2(1), 48—54.
null Barrows, H. S A taxonomy of problem-based learning methods Medical Education 1986 20 6 481 486 Barrows, H. S. (1986). A taxonomy of problem-based learning methods. Medical Education, 20(6), 481—486.
null Barrows, H. S, Bennett, K The diagnostic (problem-solving) skill of the neurologist: Experimental studies and their implications for neurological training JAMA Neurology 1972 26 3 273 277 Barrows, H. S, Bennett, K. (1972). The diagnostic (problem-solving) skill of the neurologist: Experimental studies and their implications for neurological training. JAMA Neurology, 26(3), 273—277.
null Bell T., & Vahrenhold J. (2018). CS Unplugged—How is it used, and does it work?. H.-J. B ?ockenhauer et al. (Eds.): Hromkoviˇc Festschrift, LNCS 11011, 497?521.
null Brennan, K., Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. Proceedings of the 2012 annual meeting of the American Educational Research Association, Vancouver: SAGE press, 1?25.
null Costa, E. J. F., Campos, L. M. R. S., & Guerrero, D. D. S. (2017). Computational thinking in mathematics education: A joint approach to encourage problem-solving ability. 2017 IEEE Frontiers in Education Conference (FIE). IEEE, 1?8.
null Hung, W The 3C3R model: A conceptual framework for designing problems in PBL Interdisciplinary Journal of Problem-based Learning 2006 1 1 55 77 Hung, W. (2006). The 3C3R model: A conceptual framework for designing problems in PBL. Interdisciplinary Journal of Problem-based Learning, 1(1), 55—77.
null ISTE. (2011). Computational Thinking (Learner). Retrieved from https://www.iste.org/standards/iste-standards-for-computational-thinking.
null Korkmaz, ?., ?akir, R., & ?zden, M.Y A validity and reliability study of the computational thinking scales (cts) Computers in Human Behavior 2017 72 558 569 Korkmaz, ?., ?akir, R., & ?zden, M.Y. (2017). A validity and reliability study of the computational thinking scales (cts). Computers in Human Behavior, 72, 558—569.
null Kotsopoulos, D., Floyd, L., Khan, S., Namukasa, I. K., Somanath, S., & Weber, J., et al A pedagogical framework for computational thinking Digital Experiences in Mathematics Education 2017 3 2 154 171 Kotsopoulos, D., Floyd, L., Khan, S., Namukasa, I. K., Somanath, S., & Weber, J., et al. (2017). A pedagogical framework for computational thinking. Digital Experiences in Mathematics Education, 3(2), 154—171.
null Kwak, M., Yurov K.M., Floyd, K.S A 3D learning game to foster computational thinking in k-12 education Issues in Information Systems 2015 16 20 29 Kwak, M., Yurov K.M., Floyd, K.S. (2015). A 3D learning game to foster computational thinking in k-12 education. Issues in Information Systems, 16, 20—29.
null Lye, S. Y., & Koh, J. H. L Review on teaching and learning of computational thinking through programming: what is next for k-12? Computers in Human Behavior 2014 41 51 61 Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through programming: what is next for k-12?. Computers in Human Behavior, 41, 51—61.
null K–12 Computer Science Framework Steering Committee, (2016). K-12 Computer science framework. Retrieved from https://k12cs.org/.
null PISA 2021 Mathematics Framework , (2018). Retrieved from https://pisa2021-maths.oecd.org/#Overview..
null Pérez, A A Framework for Computational Thinking Dispositions in Mathematics Education Journal for Research in Mathematics Education 2018 49 4 424 461 Pérez, A. (2018). A Framework for Computational Thinking Dispositions in Mathematics Education. Journal for Research in Mathematics Education, 49(4), 424—461.
null Polya, G. (1978). How to Solve It (second edition). Princeton University Press.
null Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & Clark, D Integrating computational thinking with k-12 science education using agent-based computation: a theoretical framework Education & Information Technologies 2013 18 351 380 Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & Clark, D. (2013). Integrating computational thinking with k-12 science education using agent-based computation: a theoretical framework. Education & Information Technologies, 18, 351—380.
null Shute, V. J., Sun, C., & Asbell-Clarke, J Demystifying computational thinking Educational Research Review 2017 22 142 158 Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research Review, 22, 142—158.
null Sung, W., Ahn J., Black, J.B Introducing Computational Thinking to Young Learners: Practicing Computational Perspectives Through Embodiment in Mathematics Education Technology, Knowledge and Learning 2017 22 443 463 Sung, W., Ahn J., Black, J.B. (2017). Introducing Computational Thinking to Young Learners: Practicing Computational Perspectives Through Embodiment in Mathematics Education. Technology, Knowledge and Learning, 22, 443—463.
null Weintrop, D., Beheshti, E., Horn, M., Orton, K., & Wilensky, U Defining computational thinking for mathematics and science classrooms Journal of Science Education and Technology 2016 25 1 127 147 Weintrop, D., Beheshti, E., Horn, M., Orton, K., & Wilensky, U. (2016). Defining computational thinking for mathematics and science classrooms. Journal of Science Education and Technology, 25(1), 127—147.
null Wing, J. M Computational thinking Communications of the ACM 2006 49 3 33 35 Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33—35.
null Yadav, A., Hong, H., Stephenson, C Computational Thinking for All: Pedagogical Approaches to Embedding 21st Century Problem Solving in K-12 Classrooms Tech Trends 2016 60 6 565 568 Yadav, A., Hong, H., Stephenson, C. (2016). Computational Thinking for All: Pedagogical Approaches to Embedding 21st Century Problem Solving in K-12 Classrooms. Tech Trends, 60(6), 565—568.
Outlines

/