特稿

教育研究中的因果关系推断——相关方法原理与实例应用

  • 黄斌 ,
  • 方超 ,
  • 汪栋
展开
  • 南京财经大学公共管理学院/公共财政研究中心, 南京 210023

网络出版日期: 2017-07-07

基金资助

国家社会科学基金教育学一般课题"2000年后我国义务教育财政制度改革效果评价研究"(BFA140039)。

Causal Inference in Education Research: Principles and Applications of Related Methods

  • HUANG Bin ,
  • FANG Chao ,
  • WANG Dong
Expand
  • Faculty of Public Administration/Center for Public Finance Research, Nanjing University of Finance and Economics, Nanjing 210023, China

Online published: 2017-07-07

摘要

近二十年来,因果关系推断方法快速发展成熟,并逐渐占据微观计量方法领域的主流地位。本文首先对因果关系推断方法兴起的背景进行了介绍;其次,探讨了判定因果关系需满足的三个条件,对在实验数据和非实验(观测)数据条件下进行因果判定的主要困难,以及观测数据研究中异质性残值的产生原因与构成进行了剖析;其三,借助小班化教学与"新机制"改革效果评价的实际案例,依次阐述了断点回归、工具变量、倾向得分结合倍差等准实验研究方法的基本原理与实现过程;最后,对准实验研究所面临的内部有效性质疑进行了回应,强调对选用方法背后隐含假设进行稳健性检验的重要性。

本文引用格式

黄斌 , 方超 , 汪栋 . 教育研究中的因果关系推断——相关方法原理与实例应用[J]. 华东师范大学学报(教育科学版), 2017 , 35(4) : 1 -14+134 . DOI: 10.16382/j.cnki.1000-5560.2017.04.001

Abstract

In the past twenty years, causal inference has developed rapidly and gradually dominated the field of micrometrics. The paper first introduces the context of the emerging causal inference methods. Next, we discuss three preconditions to reach a causal conclusion, point out the major problems with making causal inference in the experimental and non experimental studies, and analyze the main causes and components of heterogeneous residual that commonly exist in the observation studies. Then, using cases of impact evaluation of small class teaching and new mechanism reform, the paper illustrates the basic principles and analyzes procedures of some quasi experimental methods, including regression discontinuity, instrumental variable, propensity score method and double difference. Finally, in response to the doubts about the internal validity of quasi experimental studies, we emphasize the importance of robustness and sensitivity test of the implicit hypothesis that hide behind quasi experimental methods.

参考文献

Angrist, J., Bettinger, E., & Kremer, M. (2006). Long-term educational consequences of secondary school vouchers:Evidence from administrative records in Colombia. The American Economic Review, 96(3), 847-862.
Angrist, J. D., & Lavy, V. (1999). Using Maimonides' Rule to Estimate the Effect of Class Size on Scholastic Achievement.The Quarterly Journal of Economics, 114(2), 533-575.
Angrist, J. D., & Steffen, P. J. (2015).Mastering metrics:the path from cause to effect. NJ:Princeton University Press.
Borman, G. D. (2009). The use of randomized trials to inform education policy. In Sykes, G.,Schneider, B. & Plank, D. N. (Eds.).Handbook of education policy research (pp. 129-138). New York:Routledge.
Cappelleri, J. C., Darlington, R. B., & Trochim, W. M. K. (1994). Power analysis of cutoff-based randomized clinical trials. Evaluation Review, 18(2), 141-152.
Card, D. (1999).The Causal Effect of Education on Earnings.In Ashenfelter, O. & Card, D. (Eds.).Handbook of Labor Economics, 3A (pp. 1801-1864). New YorK:Elsevier.
Guo, S., & Fraser, M. W. (2010).Propensity score analysis. Thousand Oaks:Sage.
Heckman, J. J. (1979). Sample selection bias as a specification error.Econometrica, 47(1), 153-161.
Heckman, J. J. (2005). The scientific model of causality.Sociological methodology, 35(1), 1-97.
Hoxby, C. M. (2000). The Effects of Class Size on Student Achievement:New Evidence from Population Variation. The Quarterly Journal of Economics, 115(4), 1239-1285.
Imbens, G. W., & Angrist, J. D. (1994).Identification and estimation of local average treatment effects.Econometrica, 62(2), 467-475.
Imbens, G. W., & Rubin, D. B. (2015).Causal inference in statistics, social, and biomedical sciences:An introduction.New York:Cambridge University Press.
Jacob, B. A., & Lefgren, L. (2004). Remedial education and student achievement:A regression-discontinuity analysis. Review of Economics and Statistics, 86(1), 226-244.
Kaplan, D. (2009). Causal inference in non-experimental educational policy research.In Sykes, G.,Schneider, B. & Plank, D. N. (Eds.).Handbook of education policy research (pp. 139-153). New York:Routledge.
Khandker, S. R., Koolwal, G. B., &Samad, H. A. (2010).Handbook on impact evaluation:quantitative methods and practices. Washington, D. C.:World Bank Publications.
Lee, D. S., &Lemieuxa, T. Regression discontinuity designs in economics.Journal of Economic Literature, 48(2), 281-355.
Li, H., & Luo, Y. (2004). Reporting errors, ability heterogeneity, and returns to schooling in China. Pacific Economic Review, 9(3), 191-207.
Murnane, R. J., & Willett, J. B. (2011).Methods matter:Improving causal inference in educational and social science research. Oxford:Oxford University Press.
Rosenbaum, P. R., & Rubin, D. B. (1985). Constructing a control group using multivariate matched sampling methods that incorporate the propensity score. The American Statistician, 39(1), 33-38.
Rubin, D. B. (1986).Which ifs have causal inference. Journal of the American Statistical Association, 81, 961-962.
Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002).Experimental and quasi-experimental designs for generalized causal inference. Boston:Houghton, Mifflin and Company.
Smith, W. C. (2014). Estimating unbiased treatment effects in education using a regression discontinuity design. Practical Assessment, Research & Evaluation, 19(9), 2.
Thistlethwaite, D. L., & Campbell, D. T. (1960). Regression-discontinuity analysis:An alternative to the ex post facto experiment. Journal of educational Psychology, 51(6), 309.
Trochim, W. M. K. (1984). Research design for program evaluation:the regression-discontinuity approach. CA:Sage.
黄斌,钟晓琳. (2012). 中国农村地区教育与个人收入——基于三省六县入户调查数据的实证研究. 教育研究, (3),18-26.
黄斌,汪栋.(2016).中国义务教育财政投入的回顾与展望.华中师范大学学报:人文社会科学版, 55(4),154-161.
黄斌,苗晶晶,金俊. (2016)."新机制"改革对农村中小学公用经费的因果效应分析——基于准实验研究设计(工作论文). 南京:南京财经大学公共财政研究中心.
文章导航

/