基本理论与基本问题

课堂论证话语的序贯分析:小学生的科学推理

  • 邵发仙 ,
  • 胡卫平 ,
  • 张睆 ,
  • 张艳红 ,
  • 首新
展开
  • 1. 陕西师范大学现代教学技术教育部重点实验室, 西安 710062;
    2. 重庆市教育科学研究院初等教育研究所, 重庆 400015;
    3. 山西师范大学教育科学学院, 山西临汾 041004;
    4. 重庆市北碚区朝阳小学校, 重庆 400715;
    5. 重庆师范大学初等教育学院, 重庆 401147

网络出版日期: 2019-11-22

基金资助

中央高校基本科研业务费专项资金项目(2017TS116);北京师范大学中国基础教育质量监测协同创新中心自主课题(2016-05-002-BZK02,2018-05-002-BZPK01)。

Sequential Analysis of Classroom Argumentation: The Pupils' Scientific Reasoning

  • Shao Faxian ,
  • Hu Weiping ,
  • Zhang Huan ,
  • Zhang Yanhong ,
  • Shou Xin
Expand
  • 1. Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an 710062, China;
    2. Chongqing Research Academy of Education Sciences, Chongqing 400015, China;
    3. School of Education Science, Shanxi Normal University, Linfen 041004, China;
    4. Chongqing Beibei Chaoyang Primary School, Chongqing 400715, China;
    5. Department of Primary Education, Chongqing Normal University, Chongqing 400700, China

Online published: 2019-11-22

摘要

科学推理是科学学科核心素养的重要组成部分,科学论证已成为课堂教学中发展学生科学推理的重要途径。然而,教师对如何开展高质量的课堂论证还很茫然。为了探究教师对课堂论证的话语塑造如何影响学生的科学推理发展,对三堂小学科学课上的科学论证话语进行了序贯分析。发现:教师明确的推动更可能引发学生相应水平的推理,复合提问和指向不明的推动则更可能导致学生较低水平的科学推理;对学生不同水平的科学推理回应,教师的反馈模式有所不同。回溯课堂情境,讨论认为:明确的低认知问题可能导致伪论证的发生,适度的劣构问题有助于科学推理的深度发展;教师同时强调科学论证的结构和过程,鼓励学生关注反向观点及其反驳,能提高科学论证的质量。

本文引用格式

邵发仙 , 胡卫平 , 张睆 , 张艳红 , 首新 . 课堂论证话语的序贯分析:小学生的科学推理[J]. 华东师范大学学报(教育科学版), 2019 , 37(6) : 48 -60 . DOI: 10.16382/j.cnki.1000-5560.2019.06.005

Abstract

Scientific reasoning is an important part of key competencies in science, and scientific argumentation has become an important way to develop students' scientific reasoning. However, some teachers do not know how to carry out high-quality classroom argumentation. In order to find out how classroom argumentation promotes students' scientific reasoning, and examine how teachers' discourse influences students' scientific reasoning, we conducted a sequential analysis of scientific argumentation conversation in science classes in three primary schools. It is found that teachers' explicit implication is more likely to excite students' corresponding reasoning, while multiple and ambiguous questions are more likely to lead to students' lower level of scientific reasoning. In responding to students' scientific reasoning, teachers offered different feedback. The backtracking of the classroom situation revealed that clear but low-level cognitive problems might generate the pseudo-argumentation, while moderate ill-structured problems could develop students' scientific epistemology and in-depth scientific reasoning. Teachers who emphasize both the structure of scientific reasoning and the process of scientific argumentation, and encourage students to pay attention to the reverse viewpoint and refute it can improve the quality of scientific argumentation.

参考文献

陈向明. (2014). 优秀教师在教学中的思维和行动特征探究.教育研究,(5),128-138.
胡卫平. (2016). 基于核心素养的科学学业质量测评.中国考试,(8), 23-25.
林瑞吉. (1998). 序列分析在諮商歷程研究的應用-以兩組諮商個案為例.師大學報:教育類,43(1), 49-86.
宋歌,王祖浩. (2018). 实践转向的科学论证教学:国际研究新进展.比较教育研究,(7),59-67.
严文法,胡卫平. (2009). 国外青少年科学推理能力研究综述.外国中小学教育,(5), 23-28.
袁薇薇,吴庆麟. (2008). 科学思维的心理学探索.心理科学,(4), 956-959.
Bakeman, R., Gottman, J. M.(1997). Observing interaction: an introduction to sequential analysis. New York, NK: Cambridge University Press.
Bakeman, R., & Quera, V. (2011). Sequential analysis and observational methods for the behavioral sciences. New York, NY: Cambridge University Press.
Berland, L. K., & Hammer, D. (2012). Framing for scientific argumentation. Journal of Research in Science Teaching, 49(1), 68-94.
Berland, L. K., & Reiser, B. J. (2011). Classroom communities' adaptations of the practice of scientific argumentation. Science Education, 95(2), 191-216.
Duschl,A.R., & Gitomer, H.D. (1997). Strategies and challenges to changing the focus of assessment and instruction in science classrooms. Educational Assessment, 4(1), 37-73.
Ford, M. J. (2012). A dialogic account of sense-making in scientific argumentation and reasoning. Cognition and Instruction, 30(3), 207-245.
Furtak, E. M., Hardy, I., Beinbrech, C., Shavelson, J.R., & Shemwell, T.J.(2010). A framework for analyzing evidence-based reasoning in science classroom discourse. Educational Assessment, 15(3-4), 175-196.
Furtak, E. M., Ruiz‐Primo, M. A., & Bakeman, R. (2017). Exploring the utility of sequential analysis in studying informal formative assessment practices. Educational Measurement Issues & Practice, 36(1), 28-38.
Hardy,I., Kloetzer,B.,Moeller, K., &Sodian, B. (2010). The analysis of classroom discourse: Elementary school science curricula advancing reasoning with evidence. Educational Assessment, 15(3-4), 197-221.
Koerber, S., Sodian, B., Thoermer, C., & Nett, U. (2005). Scientific reasoning in young children: Preschoolers' ability to evaluate covariation evidence. Swiss Journal of Psychology, 64(3), 141-152.
Mcneill, K. L., & Pimentel, D. S. (2010). Scientific discourse in three urban classrooms: The role of the teacher in engaging high school students in argumentation. Science Education, 94(2), 203-229.
Osborne, J. F., Henderson, J. B., Macpherson, A., Szu, E., Wild, A., & Yao, S. (2016). The development and validation of a learning progression for argumentation in science. Journal of Research in Science Teaching, 53(6), 821-846.
Schauble, L. (1990).Belief revision in children: The role of prior knowledge and strategies for generating evidence. Journal of Experimental Child Psychology, 49(1), 31-57.
Simon, S., Erduran,S., &Osborne, J. (2006). Learning to teach argumentation: research and development in the science classroom. International Journal of Science Education, 28(2-3), 235-260.
Tolmie, A. K., Ghazali, Z., & Morris, S. (2016). Children's science learning: A core skills approach. British Journal of Educational Psychology, 86(3), 481-497.
Zimmerman, C. (2007). The development of scientific thinking skills in elementary and middle school. Developmental Review, 27(2), 172-223.
文章导航

/