探讨互联网对青少年学科素养与教育发展的影响有重要的理论与实践意义。本文基于我国北京、上海、江苏和广东四省市参加的国际学生评估项目(PISA)测试数据,利用倾向得分匹配法控制了样本选择性偏误,考察了互联网使用时间对中学生学科素养的影响,并重点探讨了互联网使用动机对两者关系的调节作用。研究发现,在控制了学生心理及行为特征、学校网络环境和家庭经济社会文化背景的情况下,周一至周五上网6小时以上的学生沉迷网络,会导致其数学、阅读及科学素养显著更低。互联网使用时间通过上网娱乐动机和学习动机这两种机制作用于青少年学业发展,对学生学科素养的边际效应随着上网娱乐频率的提高而不断增强;相反,其边际效应随着上网学习频率的提高而渐趋减弱。网络沉迷的青少年群体分布出现明显的异质性,长时间沉迷网络而导致低学科素养主要存在于农村地区、家庭经济社会文化地位较低的弱势亚群体,从而导致既有的教育不平等进一步扩大,由此网络沉迷对青少年教育发展的消极影响应引起教育学界和政策制定者的重视。
It is of great practical significance to explore the impact of the Internet use on the development of adolescents' literacy. Based on the survey data from Programme for International Student Assessment (PISA) in the four provinces of Beijing, Shanghai, Jiangsu and Guangdong in 2015, this paper used the propensity score matching method to control the sample selection bias, and examined the impact of Internet use on students' academic literacy and the moderating effect of Internet use motivation. This study found that after controlling for students' psychological and behavioral characteristics, school network environment and family background, students who spend more than six hours on Internet outside of school on a typical weekday showed significantly lower mathematical, reading and scientific literacy. The influence of internet use on students' academic literacy is increasing with the increase of online entertainment frequency. The lower literacy caused by Internet addiction mainly exists in rural areas among the disadvantaged groups with lower economic, social, and cultural status, which results in the expansion of educational inequality. Further, the negative effect of Internet addiction on the development of adolescents should be paid attention to by policy makers.
崔丽娟, 赵鑫, 吴明证, 徐爱红. (2006). 网络成瘾对青少年的社会性发展影响研究. 心理科学, (1), 34-36.
贺金波, 祝平平, 聂余峰, 应思远. (2017). 人格对网络成瘾的影响及其心理机制综述. 中国临床心理学杂志, 25(2), 221-224.
徐碧波, 谢涵, 林崇德, 吴鹏. (2018). 中国青少年互联网心理与行为研究及展望. 心理发展与教育, 34(3), 377-384.
张燕贞, 苏萍, 叶苑秀, 甄霜菊. (2017). 大学生网络游戏成瘾的心理社会影响因素:非适应性认知的中介作用. 华南师范大学学报(社会科学版), (4), 86-91.
中国互联网络信息中心. (2019). 第43次中国互联网络发展状况统计报告. 北京:中国互联网络信息中心.
Leuven E., & Sianesi, B. (2003). PSMATCH2: Stata module to perform full Mahalanobis and propensity score matching, common support graphing, and covariate imbalance testing. http://ideas.repec.org/c/boc/bocode/s432001.html.
Iacus, S., King, G., & Porro, G. (2018). A theory of statistical inference for matching methods in causal research. Political Analysis, 27(1), 1-23.
Palmer, T. M., & Sterne, J. A. C. (2015). Fitting fixed- and random-effects meta-analysis models using structural equation modeling with the sem and gsem commands. The Stata Journal, 15(3), 645-671.
OECD. (2015). Students, Computers and Learning: Making the Connection. Paris: OECD Publishing.
OECD. (2016). PISA 2015 Results (Volume II): Policies and Practices for Successful Schools. Paris: OECD Publishing.
OECD. (2017). PISA 2015 Results (Volume III): Students’ Well-Being. Paris: OECD Publishing.