Artificial Intelligence Promotes the Development of Future Education: Essential Connotation and Proper Direction
Online published: 2022-08-24
人工智能技术的发展为教育系统带来了机遇与挑战。通过“人工智能促进未来教育发展”这一社科重大项目的研究发现,人工智能在凸显创新人才发展的挑战,支撑大规模教育的个性化实现,重塑知识观与教学创新,赋能未来教师发展,推动教育生态的系统变革等方面是关键着力点。同时,技术赋能教育、技术创新教育、技术重塑教育是人工智能促进未来教育发展“三部曲”的进阶样态。要探究人工智能促进教育发展的内核机理,必须以复杂系统视角来揭示技术、教育、社会三者之间互动的规律,以学习科学视角探索人工智能对教育发展的本质影响,以“历史?文化”视角预测未来教育的发展趋向。在此基础上,把握智能驱动下的创新人才发展战略,聚焦人工智能驱动下教育创新的关键要素,重塑人工智能助推的未来教育生态蓝图,助力打造我国“高质量且有温度”的人工智能教育新生态。
顾小清 , 李世瑾 . 人工智能促进未来教育发展:本质内涵与应然路向[J]. 华东师范大学学报(教育科学版), 2022 , 40(9) : 1 -9 . DOI: 10.16382/j.cnki.1000-5560.2022.09.001
The development of artificial intelligence technology brings both opportunities and challenges to the education system. Based on the major social science project “Research on Artificial Intelligence Promoting the Development of Future Education”, the study found out the key focus points of artificial intelligence to promote the development of future education: artificial intelligence highlights the challenges of innovative talent development; artificial intelligence supports the personalized realization of large-scale education; artificial intelligence reshapes the concept of knowledge and teaching innovation; artificial intelligence empowers future teacher development research; and artificial intelligence promotes the systematic update of the education ecosystem. At the same time, technology empowerment education, technology innovation education, and technology reshaping education are the advanced forms of the “trilogy” of artificial intelligence to promote the development of future education. To explore the core mechanism of artificial intelligence to promote future education development, it is necessary to reveal the interaction law of “technology-education-society” from the perspective of complex systems, explore the essential impact of artificial intelligence on educational development from the perspective of learning science, and predict the development trend of future education from the perspective of “history-culture”. On this basis, it's important to grasp the development strategy of innovative talents driven by the intelligent era, focus on the key elements of education innovation driven by artificial intelligence, reshape the blueprint of future education ecology boosted by artificial intelligence, so as to create a “high-quality and warm” artificial intelligence education new ecology in China.
1 | 曹培杰. (2020). 人工智能教育变革的三重境界. 教育研究, 41 (02), 143- 150. |
2 | 顾小清. (2018). 破坏性创新: 技术如何改善教育生态. 探索与争鸣, (08), 34- 36. |
3 | 顾小清. (2019). 数字技术带来教育生态变革. 光明日报, 08-06, 13. |
4 | 顾小清, 蔡慧英. (2021). 预见人工智能的未来及其教育影响——以社会性科幻为载体的思想实验. 教育研究, 42 (05), 137- 147. |
5 | 顾小清, 舒杭. (2016). 信息技术的作用发生了吗——用学习分析技术刻画学习行为印记. 现代远程教育研究, (05), 10- 19. |
6 | 惠炜, 姜伟. (2020). 人工智能、劳动力就业与收入分配: 回顾与展望. 北京工业大学学报(社会科学版), 20 (05), 77- 86. |
7 | 李冀红, 庄榕霞, 年智英, 刘德建, 黄荣怀. (2021). 面向人机协同的创新能力培养——兼论面向智能时代的创造性人才诉求. 中国电化教育, (07), 36- 42+61. |
8 | 李世瑾, 顾小清. (2021). 中小学教师对人工智能教育接受度的影响因素研究. 现代远距离教育, (04), 66- 75. |
9 | 李世瑾, 胡艺龄, 顾小清. (2021). 如何走出人工智能教育风险的困局: 现象、成因及应对. 电化教育研究, 42 (07), 19- 25. |
10 | 刘妍, 胡碧皓, 顾小清. (2021). 人工智能将带来怎样的学习未来——基于国际教育核心期刊和发展报告的质性元分析研究. 中国远程教育, (06), 25- 34+59. |
11 | 王奕俊, 杨悠然. (2020). 人工智能背景下专业人才培养的发展路径与方向——基于会计职业相关数据的实证研究. 中国远程教育, (01), 35- 45+76?77. |
12 | 谢浩然, 陈协玲, 郑国城, 王富利. (2022). 人工智能赋能个性化学习: E-Learning推荐系统研究热点与展望. 现代远程教育研究, 34 (03), 15- 23+57. |
13 | 余胜泉. (2018). 人工智能教师的未来角色. 开放教育研究, 24 (01), 16- 28. |
14 | 赵勇. (2020). 智能机器时代的教育: 方向与策略. 教育研究, 41 (03), 26- 35. |
15 | Dignum, V. (2019). Responsible artificial intelligence: How to develop and use AI in a responsible way. Cham: Springer. |
16 | OECD. (2015). Students, computers and learning. Retrieved from https://www.oecd-ilibrary.org/docserver/9789264239555-en.pdf?expires=1656983697&id=id&accname=guest&checksum=FFB6FE51F0D40EA91684C1610C6A1DD3 |
17 | Verkijika, S. F., & De Wet, L. (2015). Using a brain-computer interface (BCI) in reducing math anxiety: Evidence from south Africa. Computers & Education, 81 (2), 113- 122. |
18 | Working Group Future of Work and Human-Machine Interaction. (2020). Criteria for human machine interaction when using AI. Retrieved from https://www.plattform-lernende-systeme.de/files/Downloads/Publikationen_EN/AG2%20_WP_MMI_Englisch.pdf. |
/
〈 |
|
〉 |