智能化学习与教学创新

人工智能促进知识理解:以概念转变为目标的实证研究

  • 杜华 ,
  • 顾小清
展开
  • 1. 浙江师范大学 浙江省智能教育技术与应用重点实验室 浙江金华,321004
    2. 华东师范大学 教育信息技术学系,上海,200062

网络出版日期: 2022-08-24

基金资助

2019年度国家社会科学基金重大项目“人工智能促进未来教育发展研究”(19ZAD364)

Artificial Intelligence for Knowledge Understanding: An Empirical Study Aimed at Conceptual Change

  • Hua Du ,
  • Xiaoqing Gu
Expand
  • 1. Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, Zhejiang, 321004
    2. Department of Education Information Technology, East China Normal University, Shanghai, China, 200062

Online published: 2022-08-24

摘要

理解被广泛认为是教育的重要价值追求,“为理解而教,为理解而学”已然成为学界共识。知识理解是概念转变的基础,知识应用与创新的前提,是学习者高阶思维发展的关键,是深度学习的旨向。人工智能为学习者提供更多样的知识呈现方式与形态,提供更精准的学习分析,创设智能化的真实学习情境,为学习者的概念转变与知识理解创造了良好的条件。正是基于这样的背景,我们以概念转变为切入点,以上海方略教育研发的智能全息盒子为主要的智能仿真学习环境,开展了一项实证研究,旨在探究智能仿真学习环境对学习者概念转变的影响,由此窥察人工智能促进知识理解的诸多可能。研究结果表明,人工智能所建构的智能仿真学习环境,对于学习者概念转变具有积极的促进作用。

本文引用格式

杜华 , 顾小清 . 人工智能促进知识理解:以概念转变为目标的实证研究[J]. 华东师范大学学报(教育科学版), 2022 , 40(9) : 67 -77 . DOI: 10.16382/j.cnki.1000-5560.2022.09.007

Abstract

Understanding is widely regarded as an important value pursuit in education. “Teaching for understanding and learning for understanding” has become a consensus. Knowledge understanding is the basis of concept transformation, the premise of knowledge application and innovation, the key to the development of learners’ higher-order thinking, and the aim of deep learning. At present, when human education is transforming to intelligent education, artificial intelligence can enhance personalized learning, enrich the presentation form of knowledge, support man-machine collaborative learning, and create real learning situations, which brings many possibilities for promoting learners’ knowledge understanding. Based on this background, the authors conduct an empirical study which aims to explore the influence of artificial intelligence learning environment on learners’ conceptual change. The results show that the intelligent learning environment has a positive promoting effect on learners’ conceptual change.

参考文献

1 陈家刚. (2013). 促进理解性学习的课程和教学设计原则. 全球教育展望, 42 (01), 53- 61.
2 陈明选, 刘径言. (2012). 教育信息化进程中教学设计的转型——基于理解的视角. 电化教育研究, 33 (08), 10- 16.
3 邓峰, 钱扬义. (2007). 国外几种科学概念转变教学模式简介与评析. 中学化学教学参考, (04), 61- 63.
4 杜华, 顾小清. (2020). 教育技术学理论五问——兼论教育技术学之于教育学理论建构的贡献. 教育研究, 41 (01), 148- 159.
5 顾小清. (2021). 当现实逼近想象: 人工智能时代预见未来教育研究. 开放教育研究, 27 (01), 4- 12.
6 郭炯, 郝建江. (2019). 人工智能环境下的学习发生机制. 现代远程教育研究, 31 (05), 32- 38.
7 胡卫平, 刘建伟. (2004). 概念转变模型: 理论基础、主要内容、发展与修正. 学科教育, (12), 34- 38.
8 牟智佳. (2017). “人工智能+”时代的个性化学习理论重思与开解. 远程教育杂志, 35 (03), 22- 30.
9 彭聪. (2015). 我国概念转变教学策略的研究综述. 教育导刊, (09), 54- 57.
10 乔纳森. (2008). 技术支持的思维建模: 用于概念转变的思维工具(顾小清译). 上海: 华东师范大学出版社.
11 舒杭. (2020). 学习分析技术支持的概念转变过程研究. 上海: 华东师范大学博士论文.
12 孙崇勇. (2012). 认知负荷的测量及其在多媒体学习中的应用. 苏州: 苏州大学博士论文.
13 孙艳超. (2016). 可视化工具支持的概念转变研究. 上海: 华东师范大学博士论文.
14 闫志明, 唐夏夏, 秦旋, 张飞, 段元美. (2017). 教育人工智能(EAI)的内涵、关键技术与应用趋势——美国《为人工智能的未来做好准备》和《国家人工智能研发战略规划》报告解析. 远程教育杂志, 35 (01), 26- 35.
15 袁维新. (2003). 概念转变学习的内在机制探析. 教育研究与实验, (02), 49- 54.
16 王燕. (2014). “理解性教学”的理念与实践. 上海教育科研, (02), 77- 79.
17 王珏, 解月光. (2017). 基于前概念体系的学习者认知诊断方法研究——以初中物理“力与运动”主题为例. 电化教育研究, 38 (9), 122- 128.
18 杨玉桓, 汪波, 雷颜萍, 李秀玉. (1988). 浅谈试卷的信度与效度. 天津教育, (11), 19- 20.
19 张良, 关素芳. (2021). 为理解而学: 人工智能时代的知识学习. 湖南师范大学教育科学学报, 20 (01), 55- 60.
20 张琼, 胡炳仙. (2016). 知识的情境性与情境化课程设计. 课程. 教材. 教法, 36 (06), 26- 32.
21 邹一娜, 周勇. (2011). 课堂探究学习活动中概念教学策略研究. 全球教育展望, 40 (02), 82- 87.
22 Brown, J. S., Collins, A., &Duguid, P. (1989). Situated Cognition and the Culture of Learning. Educational Researcher, 18 (1), 32- 42.
23 DiSessa A. A. (1982). Unlearning Aristotelian physics: A study of knowledge-based learning. Cognitive science, 6 (1), 37- 75.
24 Foley, B. J. (1999). Visualization tool: Models, Representation and Knowledge Integration. Berkeley: University of California.
25 Gobert J. D, Clement J. J. (1999). Effects of student-generated diagrams versus student-generated summaries on conceptual understanding of causal and dynamic knowledge in plate tectonics. Journal of Research in Science Teaching, 36 (1), 39- 53.
26 Halford G. S. (2014). Children's understanding: The development of mental models. Psychology Press.
27 Hart, S. G. , Staveland, L. E.. (1988). Development of NASA-TLX(Task Load Index): results of empirical and theoretical research. Advances in Psychology, 52 (6), 139- 183.
28 Hynd C. R. (2001). Refutational texts and the change process. International Journal of Educational Research, 35 (7-8), 699- 714.
29 Kaiser, M. K., Proffitt, D. R., Whelan, S. M., &Hecht, H. (1992). Influnce of animation on dynamical judgments. Journalof Experimental Psychology:Human Perception and Performance. 18(3), 669- 689.
30 Kendeou P., Walsh E. K., Smith E. R., et al. (2014). Knowledge revision processes in refutation texts. Discourse Processes, 51 (5-6), 374- 397.
31 Larkin D. (2012). Using the conceptual change model of learning as an analytic tool in researching teacher preparation for student diversity. Teachers College Record, 114 (8), 1- 35.
32 Lewis, E. L. (1991). The process of scientific knowledge acquisition among middle school students learning thermdynamics. Berkeley: University of California.
33 Liu T. C. (2010). Developing Simulation-based Computer Assisted Learning to Correct Students' Statistical Misconceptions based on Cognitive Conflict Theory, using" Correlation" as an Example. Educational Technology & Society, 13 (2), 180- 192.
34 Michotte, A. (1963). The perception of causality. London: Methuen.
35 Mitchell I., Baird J. (1986). Teaching, learning and the curriculum 1: The influence of content in science. Research in Science Education, 16 (1), 141- 149.
36 Novak J. D., Gowin D. B., &Bob G. D. (1984). Learning how to learn. Cambridge: Cambridge University Press.
37 Paas, F. (1993). Instructional control of cognitive load in the training of complex cognitive tasks. Hague: University of Twente.
38 Potvin P., Sauriol é., &Riopel M. (2015). Experimental evidence of the superiority of the prevalence model of conceptual change over the classical models and repetition. Journal of Research in Science Teaching, 52 (8), 1082- 1108.
39 Prinz A., Golke S., &Wittwer J.,. (2018). Refutation texts compensate for detrimental effects of misconceptions on comprehension and metacomprehension accuracy and support transfer. Journal of Educational Psychology, 111 (6), 1- 87.
40 Scaife, M., Rogers, Y. (1996). External cognition: How do graphical representations work?. International Journal of Human-Compter Studies, 45 (2), 185- 213.
41 Sellmann D., Liefl?nder A. K., &Bogner F. X. (2015). Concept maps in the classroom: A new approach to reveal students’ conceptual change. The Journal of Educational Research, 108 (3), 250- 257.
42 She H. C., Liao Y. W. (2010). Bridging scientific reasoning and conceptual change through adaptive web‐based learning. Journal of Research in Science Teaching, 47 (1), 91- 119.
43 Snir, J., Smith, C., &Grosslight, L. (1993). Conceptually ehanced simualtions: A computer tool for science teaching. Journal of Science and Technology, 2 (2), 373- 388.
44 Solomon S. H., Medaglia J. D., Thompson-Schill S. L.. (2019). Implementing a concept network model. Behavior research methods, 51 (4), 1717- 1736.
45 Ting C. Y., Sam Y. C., &Wong C. O. (2013). Model of conceptual change for INQPRO: A Bayesian Network approach. Computers & Education, 65, 77- 91.
46 Trundle K. C., Bell R. L. (2010). The use of a computer simulation to promote conceptual change: A quasi-experimental study. Computers & Education, 54 (4), 1078- 1088.
47 Tsang, P. S., Velazquez, V. L. (1996). Diagnosticity and multidimensional subjective workload ratings. Ergonomics, 39 (3), 358- 381.
48 Tseng C. H., Tuan H. L., &Chin C. C. (2010). Investigating the influence of motivational factors on conceptual change in a digital learning context using the dual‐situated learning model. International Journal of Science Education, 32 (14), 1853- 1875.
49 Wandersee J. H. (1990). Concept mapping and the cartography of cognition. Journal of research in science teaching, 27 (10), 923- 936.
50 Yin Y., Tomita M. K., &Shavelson R. J. (2014). Using formal embedded formative assessments aligned with a short-term learning progression to promote conceptual change and achievement in science. International Journal of Science Education, 36 (4), 531- 552.
文章导航

/