巴桑卓玛. (2006). 中小学生对统计的认知水平研究. 长春: 东北师范大学博士学位论文. 彼格斯, 科利斯, 等. (2010). 学习质量评价(高凌飚等译). 北京: 人民教育出版社. 高一珠, 陈孚, 辛涛, 詹沛达, 姜宇. (2017). 心理测量学模型在学习进阶中的应用:理论、途径和突破. 心理科学进展,25(09),1623-1630 李化侠, 辛涛, 宋乃庆, 杨涛. (2018). 小学生统计思维测评模型构建. 教育研究与实验,181(02),80-86 李亚. (2016). 我国地理核心素养的学习进阶研究. 上海: 华东师范大学硕士学位论文. 史宁中, 张丹, 赵迪. (2008). “数据分析观念”的内涵及教学建议——数学教育热点问题系列访谈之五. 课程·教材·教法,28(06),40-44 王祖浩, 杨玉琴. (2012). 基于Rasch模型的“化学实验认知能力”测验工具编制及测评研究. 化学教育(中英文),33(9),95-102 韦斯林, 贾远娥. (2010). 学习进程:促进课程、教学与评价的一致性. 全球教育展望,39(09),24-31 张燕华, 郑国民, 关惠文. (2014). 中学生语文学科能力表现——基于Rasch模型的语文测试评价. 课程·教材·教法,34(11),69-74 Alonzo, A., & Steedle, J. (2009). Developing and assessing a force and motion learning progression. Science Education, 93(3), 389-421 Briggs, D., Alonzo, A., Schwab, C., & Wilson, M. (2006). Diagnostic assessment with ordered multiple-choice items. Educational Assessment, 11(1), 33-63 Chen, J.(2012). Applying item response theory methods to design a learning progression-based science assessment(Doctoral Dissertation). Michigan: Michigan State University. Corcoran, T., Mosher, F., & Rogat, A.(2009). Learning Progressions in Science: An Evidence-Based Approach to Reform. CPRE Research Report # RR-63. Consortium for Policy Research in Education. Duncan, R., & Hmelo-Silver, C. (2009). Learning progressions: Aligning curriculum, instruction, and assessment. Journal of Research in Science Teaching, 46(6), 606-609 Duschl, R., Maeng, S., & Sezen, A. (2011). Learning progressions and teaching sequences: A review and analysis. Studies in Science Education, 47(2), 123-182 Frank, K. (2000). Impact of a confounding variable on a regression coefficient. Sociological Methods & Research, 29(2), 147-194 Javid, L. (2014). The comparison between multiple-choice(MC) and multiple true-false(MTF) test formats in Iranian intermediate EFL learners’ vocabulary learning. Procedia-Social and Behavioral Sciences, 98, 784-788 Jones, G., Thornton, C., Langrall, C., Mooney, E., Perry, B., & Putt, I (2000). A framework for characterizing children's statistical thinking. Mathematical Thinking and Learning, 2(4), 269-307 Kane, M., & Bejar, I. (2014). Cognitive frameworks for assessment, teaching, and learning: A validity perspective. Psicología Educativa, 20(2), 117-123 Keeves, J. P., & Alagumalai, S. (1999). New approaches to measurement. In Masters, G. N., & Keeves, J. P. (ed.). Advances in Measurement in Educational Research and Assessment. New York: Pergamon. Lane, S. (2010). Validity of high-stakes assessment: Are students engaged in complex thinking?. Educational Measurement Issues & Practice, 23(3), 6-14 National Research Council [NRC](2007). Taking Science to School: Learning and Teaching Science in Grades K-8. Washington, DC: The National Academies Press. Plummer, J. D. (2012). Challenges in defining and validating an astronomy learning progression. In Alonzo, A.C., & Gotwals A.W. (ed.). Learning Progressions in Science. Rotterdam: SensePublishers. Tatsuoka, K. K, Corter, J. E, & Tatsuoka, C (2004). Patterns of diagnosed mathematical content and process skills in TIMSS-R across a sample of 20 countries. American Educational Research Journal, 41(4), 901-926 Watson, J., & Callingham, R (2003). Statistical literacy: A complex hierarchy construct. Statistics Education Research Journal, 2(2), 3-46 Watson, J., & Kelly, B. A. (2002). Can grade 3 students learn about variation? Proceedings of the Sixth International Conference on Teaching Statistics(ICOTS6). Cape Town: International Statistics Institution 2002. Wei, S., Liu, X., & Jia, Y. (2014). Using Rasch measurement to validate the instrument of students’ understanding of models in science(sums). International Journal of Science and Mathematics Education, 12(5), 1067-1082 Wilson, M. (2004). Constructing Measures: An Item Response Modeling Approach. New Jersey: Lawrence Erlbaum Associates. Wu M. L., Adams, R. J., & Wilson, M. R.(1998). ConQuest: Generalized Item Response Modelling Software. Sydney: Australian Council for Educational Research(ACER).
|