Journal of East China Normal University(Educational Sciences) ›› 2022, Vol. 40 ›› Issue (11): 69-79.doi: 10.16382/j.cnki.1000-5560.2022.11.006
Previous Articles Next Articles
Jing Zhang
Online:
2022-11-01
Published:
2022-10-27
Jing Zhang. IQ or EQ: Which is More Important for Students’ Learning ?[J]. Journal of East China Normal University(Educational Sciences), 2022, 40(11): 69-79.
"
变量 | 平均数 | 标准差 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
T1 | |||||||||
1. 情绪稳定性 | 35.16 | 7.69 | (0.85) | ||||||
2. 外向性 | 42.28 | 6.43 | ?0.38*** | (0.81) | |||||
3. 开放性 | 41.60 | 5.57 | ?0.10** | 0.21*** | (0.69) | ||||
4. 宜人性 | 29.70 | 5.11 | 0.38*** | ?0.22*** | ?0.11* | (0.65) | |||
5. 尽责性 | 38.34 | 6.25 | ?0.43*** | 0.25*** | 0.26*** | ?0.36*** | (0.83) | ||
6. 数学成绩 | 98.07 | 30.80 | ?0.14** | 0.09* | 0.22*** | ?0.02 | 0.17** | ||
7. 语文成绩 | 101.19 | 20.49 | ?0.09* | 0.17** | 0.23*** | ?0.04 | 0.10** | 0.51*** | |
8. 英语成绩 | 100.56 | 32.29 | ?0.03 | 0.11** | 0.27*** | 0.07 | 0.07* | 0.55** | 0.59*** |
T2 | |||||||||
1. 情绪稳定性 | 35.11 | 7.86 | (0.86) | ||||||
2. 外向性 | 42.21 | 6.49 | ?0.37*** | (0.82) | |||||
3. 开放性 | 41.83 | 5.62 | ?0.10** | 0.21*** | (0.70) | ||||
4. 宜人性 | 29.81 | 5.28 | 0.43*** | ?0.28*** | ?0.23** | (0.68) | |||
5. 尽责性 | 38.24 | 6.33 | ?0.46*** | 0.28*** | 0.32*** | ?0.43*** | (0.83) | ||
6. 数学成绩 | 96.62 | 32.36 | ?0.10** | 0.10** | 0.24*** | ?0.10** | 0.14** | ||
7. 语文成绩 | 97.93 | 18.87 | ?0.03 | 0.13** | 0.20*** | ?0.06 | 0.12** | 0.52*** | |
8. 英语成绩 | 98.78 | 31.86 | 0.02 | 0.08* | 0.25*** | ?0.03 | 0.07* | 0.66*** | 0.60*** |
T3 | |||||||||
1. 情绪稳定性 | 35.37 | 7.33 | (0.85) | ||||||
2. 外向性 | 42.45 | 6.11 | ?0.39*** | (0.80) | |||||
3. 开放性 | 41.32 | 5.36 | ?0.12** | 0.18*** | (0.69) | ||||
4. 宜人性 | 29.49 | 5.08 | 0.42*** | ?0.19*** | ?0.18*** | (0.67) | |||
5. 尽责性 | 39.51 | 6.02 | ?0.41*** | 0.26*** | 0.37*** | ?0.37*** | (0.83) | ||
6. 数学成绩 | 89.01 | 29.14 | ?0.10** | 0.02 | 0.23*** | 0.02 | 0.15** | ||
7. 语文成绩 | 100.72 | 18.41 | ?0.03 | 0.00 | 0.16*** | ?0.04 | 0.12** | 0.55*** | |
8. 英语成绩 | 93.18 | 30.54 | ?0.04 | 0.02 | 0.22*** | 0.04 | 0.09* | 0.72*** | 0.59*** |
"
模型 | χ2 (df) | RMSEA (90% CI) | CFI | TLI | SRMR | BIC |
情绪稳定性 | ||||||
M1: 形态等值模型 | 28.11 (15) | 0.033 [0.013, 0.052] | 0.997 | 0.994 | 0.019 | 8716.76 |
M2: 弱等值模型 | 42.13 (21) | 0.036 [0.020, 0.051] | 0.996 | 0.993 | 0.047 | 8690.77 |
M3: 强等值模型 | 45.13 (25) | 0.032 [0.016, 0.047] | 0.996 | 0.994 | 0.048 | 8667.09 |
外向性 | ||||||
M1: 形态等值模型 | 23.76 (15) | 0.027 [0.000, 0.047] | 0.998 | 0.996 | 0.022 | 7266.88 |
M2: 弱等值模型 | 26.16 (21) | 0.018 [0.000, 0.037] | 0.999 | 0.998 | 0.030 | 7229.27 |
M3: 强等值模型 | 31.97 (25) | 0.019 [0.000, 0.036] | 0.999 | 0.998 | 0.033 | 7208.40 |
开放性 | ||||||
M1: 形态等值模型 | 38.77 (15) | 0.045 [0.028, 0.063] | 0.994 | 0.986 | 0.032 | 7018.70 |
M2: 弱等值模型 | 44.18 (21) | 0.037 [0.022, 0.053] | 0.994 | 0.990 | 0.045 | 6984.10 |
M3: 强等值模型 | 58.72 (25) | 0.041 [0.028, 0.055] | 0.992 | 0.988 | 0.045 | 6971.97 |
宜人性 | ||||||
M1: 形态等值模型 | 30.30 (15) | 0.036 [0.017, 0.054] | 0.995 | 0.988 | 0.027 | 8132.77 |
M2: 弱等值模型 | 33.97 (21) | 0.028 [0.007, 0.045] | 0.996 | 0.993 | 0.029 | 8096.43 |
M3: 强等值模型 | 42.09 (25) | 0.029 [0.012, 0.045] | 0.994 | 0.992 | 0.028 | 8077.87 |
责任心 | ||||||
M1: 形态等值模型 | 37.97 (15) | 0.044 [0.027, 0.062] | 0.995 | 0.989 | 0.020 | 6447.70 |
M2: 弱等值模型 | 43.24 (21) | 0.037 [0.021, 0.052] | 0.996 | 0.992 | 0.038 | 6412.96 |
M3: 强等值模型 | 280.11 (25) | 0.114 [0.102, 0.126] | 0.949 | 0.926 | 0.136 | 6623.16 |
M4: 部分强等值 | 48.57 (24) | 0.036 [0.021, 0.051] | 0.995 | 0.993 | 0.041 | 6398.29 |
"
T1-T2 | T2-T3 | ||||||
影响路径 | 数学 | 英语 | 语文 | 数学 | 英语 | 语文 | |
交叉滞后效应—开放性(t-1)作用于学习成绩(t) | 0.11*** | 0.06** | 0.09*** | 0.13*** | 0.06*** | 0.09*** | |
交叉滞后效应—尽责性(t-1)作用于学习成绩(t) | ?0.01 | 0.04 | 0.03 | ?0.01 | 0.04 | 0.03 | |
交叉滞后效应—宜人性(t-1)作用于学习成绩(t) | 0.03 | 0.02 | 0.04 | 0.05 | 0.03 | 0.06 | |
交叉滞后效应—外向性(t-1)作用于学习成绩(t) | ?0.01 | ?0.03 | 0.02 | ?0.01 | ?0.03 | 0.02 | |
交叉滞后效应—情绪稳定性(t-1)作用于学习成绩(t) | ?0.03 | ?0.02 | 0.01 | ?0.04 | ?0.02 | 0.01 | |
交叉滞后效应—智力(t1)作用于学习成绩(t) | 0.10*** | 0.05** | 0.02 | 0.07** | 0.05** | 0.06* | |
交互作用-智力(t1)与开放性人格(t)交互作用于学业成绩(t) | ?0.05* | ?.01 | ?0.12*** | ?0.06* | ?0.01 | ?0.13*** |
Bollen, K. A., & Curran, P. J Autoregressive latent trajectory (alt) models a synthesis of two traditions Sociological Methods & Research 2004 32 336 383 Bollen, K. A., & Curran, P. J. (2004). Autoregressive latent trajectory (alt) models a synthesis of two traditions. Sociological Methods & Research, 32, 336—383. | |
Brown, T. A. (2006). Confirmatory Factor Analysis for Applied Research. The Guilford Press: New York, NY, USA. | |
Cheung, G. W., & Rensvold, R. B Evaluating goodness-of-fit indexes for testing measurement invariance Structural Equation Modeling 2002 9 233 255 Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling, 9, 233—255.
doi: 10.1207/S15328007SEM0902_5 |
|
Deary, I. J., Strand, S., Smith, P., & Fernandes, C Intelligence and educational achievement Intelligence 2007 35 13 21 Deary, I. J., Strand, S., Smith, P., & Fernandes, C. (2007). Intelligence and educational achievement. Intelligence, 35, 13—21.
doi: 10.1016/j.intell.2006.02.001 |
|
De Feyter, T., Caers, R., Vigna, C., & Berings, D Unraveling the impact of the Big Five personality traits on academic performance: The moderating and mediating effects of self-efficacy and academic motivation Learning and Individual Differences 2012 22 439 448 De Feyter, T., Caers, R., Vigna, C., & Berings, D. (2012). Unraveling the impact of the Big Five personality traits on academic performance: The moderating and mediating effects of self-efficacy and academic motivation. Learning and Individual Differences, 22, 439—448.
doi: 10.1016/j.lindif.2012.03.013 |
|
De Raad, B., & Schouwenburg, H. C Personality in learning and education: A review European Journal of Personality 1996 10 303 336 De Raad, B., & Schouwenburg, H. C. (1996). Personality in learning and education: A review. European Journal of Personality, 10, 303—336.
doi: 10.1002/(SICI)1099-0984(199612)10:5<303::AID-PER262>3.0.CO;2-2 |
|
Digman, J. M Five robust trait dimensions: Development, stability, and utility Journal of Personality 1989 57 195 214 Digman, J. M. (1989). Five robust trait dimensions: Development, stability, and utility. Journal of Personality, 57, 195—214.
doi: 10.1111/j.1467-6494.1989.tb00480.x |
|
Eccles, J. S., Midgley, C., Wigfield, A., Buchanan, C. M., Reuman, D., Flanagan, C., & Mac Iver, D Development during adolescence: The impact of stage-environment fit on young adolescents’ experiences in schools and in families American Psychologist 1993 48 90 101 Eccles, J. S., Midgley, C., Wigfield, A., Buchanan, C. M., Reuman, D., Flanagan, C., & Mac Iver, D. (1993). Development during adolescence: The impact of stage-environment fit on young adolescents’ experiences in schools and in families. American Psychologist, 48, 90—101.
doi: 10.1037/0003-066X.48.2.90 |
|
Greiff, S., & Neubert, J. C On the relation of complex problem solving, personality, fluid intelligence, and academic achievement Learning and Individual Differences 2014 36 37 48 Greiff, S., & Neubert, J. C. (2014). On the relation of complex problem solving, personality, fluid intelligence, and academic achievement. Learning and Individual Differences, 36, 37—48.
doi: 10.1016/j.lindif.2014.08.003 |
|
Heaven, P. C. L., & Ciarrochi, J When IQ is not everything: Intelligence, personality and academic performance at school Personality and Individual Differences 2012 53 518 522 Heaven, P. C. L., & Ciarrochi, J. (2012). When IQ is not everything: Intelligence, personality and academic performance at school. Personality and Individual Differences, 53, 518—522.
doi: 10.1016/j.paid.2012.04.024 |
|
Heineck, G., & Anger, S. (2010). The returns to cognitive abilities and personality traits in Germany. EconStor Open Access Articles and Book Chapters. | |
Hu, L. T., & Bentler, P. M Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives Structural Equation Modeling-a Multidisciplinary Journal 1999 6 1 55 Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling-a Multidisciplinary Journal, 6, 1—55.
doi: 10.1080/10705519909540118 |
|
Kim, L. E., Poropat, A. E., & MacCann, C. (2016). Conscientiousness in education: Its conceptualization, assessment, and utility. In A. A. Lipnevich, F. Preckel, & R. D. Roberts (Eds. ), Springer series on human exceptionality. Psychosocial skills and school systems in the 21st century: Theory, research, and practice (pp. 155−185). Switzerland: Springer. | |
Klein, A., & Moosbrugger, H Maximum likelihood estimation of latent interaction effects with the lms method Psychometrika 2000 65 457 474 Klein, A., & Moosbrugger, H. (2000). Maximum likelihood estimation of latent interaction effects with the lms method. Psychometrika, 65, 457—474.
doi: 10.1007/BF02296338 |
|
Lechner, C., Danner, D., & Rammstedt, B How is personality related to intelligence and achievement? A replication and extension of Borghans et al. and Salkever Personality and Individual Differences 2017 111 86 91 Lechner, C., Danner, D., & Rammstedt, B. (2017). How is personality related to intelligence and achievement? A replication and extension of Borghans et al. and Salkever. Personality and Individual Differences, 111, 86—91.
doi: 10.1016/j.paid.2017.01.040 |
|
Little, T. D., Rhemtulla, M., Gibson, K., & Schoemann, A. M Why the items versus parcels controversy needn't be one Psychological Methods 2013 18 285 300 Little, T. D., Rhemtulla, M., Gibson, K., & Schoemann, A. M. (2013). Why the items versus parcels controversy needn't be one. Psychological Methods, 18, 285—300.
doi: 10.1037/a0033266 |
|
Lu, L., Weber, H. S., Spinath, F. M., & Shi, J Predicting school achievement from cognitive and non-cognitive variables in a Chinese sample of elementary school children Intelligence 2011 39 130 140 Lu, L., Weber, H. S., Spinath, F. M., & Shi, J. (2011). Predicting school achievement from cognitive and non-cognitive variables in a Chinese sample of elementary school children. Intelligence, 39, 130—140.
doi: 10.1016/j.intell.2011.02.002 |
|
Lubbers, M. J., van der Werf, M. P. C., Kuyper, H., & Hendriks, A. J. Does homework behavior mediate the relation between personality and academic performance? Learning and Individual Differences 2010 20 203 208 Lubbers, M. J., van der Werf, M. P. C., Kuyper, H., & Hendriks, A. J. (2010). Does homework behavior mediate the relation between personality and academic performance?. Learning and Individual Differences, 20, 203—208. | |
Marsh, H. W. (2007). Self-concept theory, measurement and research into practice: The role of self-concept in educational psychology. Leicester, UK: British Psychological Society. | |
Muthén, L. K. , & Muthén, B. O. (1998—2017). Mplus User’s Guide: 8th Edition. Los Angeles, CA: Muthén & Muthén. | |
Poropat, A. E A meta-analysis of the five-factor model of personality and academic performance Psychological Bulletin 2009 135 322 338 Poropat, A. E. (2009). A meta-analysis of the five-factor model of personality and academic performance. Psychological Bulletin, 135, 322—338.
doi: 10.1037/a0014996 |
|
Raven, J. (1981). Manual for Raven’s Progressive Matrices and Mill Hill Vocabulary Scales. Oxford, UK: Oxford Psychologists Press. | |
Revelle, W., & Zinbarg, R. E Coefficients alpha, beta, omega, and the glb: Comments on sijtsma Psychometrika 2009 74 145 154 Revelle, W., & Zinbarg, R. E. (2009). Coefficients alpha, beta, omega, and the glb: Comments on sijtsma. Psychometrika, 74, 145—154.
doi: 10.1007/s11336-008-9102-z |
|
Richardson, M., Abraham, C., & Bond, R Psychological correlates of university students’ academic performance: A systematic review and meta-analysis Psychological Bulletin 2012 138 353 387 Richardson, M., Abraham, C., & Bond, R. (2012). Psychological correlates of university students’ academic performance: A systematic review and meta-analysis. Psychological Bulletin, 138, 353—387.
doi: 10.1037/a0026838 |
|
Rosander, P., Bäckström, M., & Stenberg, G Personality traits and general intelligence as predictors of academic performance: A structural equation modelling approach Learning and Individual Differences 2011 21 590 596 Rosander, P., Bäckström, M., & Stenberg, G. (2011). Personality traits and general intelligence as predictors of academic performance: A structural equation modelling approach. Learning and Individual Differences, 21, 590—596.
doi: 10.1016/j.lindif.2011.04.004 |
|
Roth, B., Becker, N., Romeyke, S., Schäfer, S., Domnick, F., & Spinath, F. M Intelligence and school grades: A meta-analysis Intelligence 2015 53 118 137 Roth, B., Becker, N., Romeyke, S., Schäfer, S., Domnick, F., & Spinath, F. M. (2015). Intelligence and school grades: A meta-analysis. Intelligence, 53, 118—137.
doi: 10.1016/j.intell.2015.09.002 |
|
Spinath, B., Freudenthaler, H., & Neubauer, A. C Domain-specific school achievement in boys and girls as predicted by intelligence, personality and motivation Personality and Individual Differences 2010 48 481 486 Spinath, B., Freudenthaler, H., & Neubauer, A. C. (2010). Domain-specific school achievement in boys and girls as predicted by intelligence, personality and motivation. Personality and Individual Differences, 48, 481—486.
doi: 10.1016/j.paid.2009.11.028 |
|
Taub, G. E., Keith, T. Z., Floyd, R. G., & Mcgrew, K. S Effects of general and broad cognitive abilities on mathematics achievement School Psychology Quarterly 2008 23 187 198 Taub, G. E., Keith, T. Z., Floyd, R. G., & Mcgrew, K. S. (2008). Effects of general and broad cognitive abilities on mathematics achievement. School Psychology Quarterly, 23, 187—198.
doi: 10.1037/1045-3830.23.2.187 |
|
Tweed, R. G., & Lehman, D. R Learning considered within a cultural context American Psychologist 2002 57 89 99 Tweed, R. G., & Lehman, D. R. (2002). Learning considered within a cultural context. American Psychologist, 57, 89—99. | |
Tett, R. P., & Burnett, D. D. A personality trait-based interactionist model of job performance Journal of Applied Psychology 2003 88 500 517 Tett, R. P., & Burnett, D. D. (2003). A personality trait-based interactionist model of job performance. Journal of Applied Psychology, 88, 500—517. | |
Vedel, A. , & Poropat, A. E. (2017). Personality and academic performance. In V. Zeigler-Hill, & T. Shackelford (Eds. ), Encyclopedia of personality and individual differences (pp. 1−9). Springer. | |
Yao, R. S., & Liang, L. Y The application and analysis of NEO-FFI in Chinese college students Chinese Journal of Clinical Psychology 2010 18 457 459 Yao, R. S., & Liang, L. Y. (2010). The application and analysis of NEO-FFI in Chinese college students. Chinese Journal of Clinical Psychology, 18, 457—459. | |
Zhang, J., & Ziegler, M Interaction effects between openness and fluid intelligence predicting scholastic performance Journal of Intelligence 2015 3 91 110 Zhang, J., & Ziegler, M. (2015). Interaction effects between openness and fluid intelligence predicting scholastic performance. Journal of Intelligence, 3, 91—110.
doi: 10.3390/jintelligence3030091 |
|
Ziegler, M., Danay, E., Heene, M., Asendorpf, J., & Bühner, M Openness, fluid intelligence, and crystallized intelligence: Toward an integrative model Journal of Research in Personality 2012 46 173 183 Ziegler, M., Danay, E., Heene, M., Asendorpf, J., & Bühner, M. (2012). Openness, fluid intelligence, and crystallized intelligence: Toward an integrative model. Journal of Research in Personality, 46, 173—183.
doi: 10.1016/j.jrp.2012.01.002 |
[1] | Xiaoqing Gu, Shijin Li. Artificial Intelligence Promotes the Development of Future Education: Essential Connotation and Proper Direction [J]. Journal of East China Normal University(Educational Sciences), 2022, 40(9): 1-9. |
[2] | Xuesong Zhai, Jiaqi Xu, Yonggu Wang. Research on Learning Affective Computing in Online Education: From the Perspective of Multi-source Data Fusion [J]. Journal of East China Normal University(Educational Sciences), 2022, 40(9): 32-44. |
[3] | Huiying Cai, Haixia Dong, Xu Chen, Xiaoqing Gu. How to Build Future School: Prospective Analysis and Practical Enlightenment of Application Scenarios of AI in Education [J]. Journal of East China Normal University(Educational Sciences), 2022, 40(9): 45-54. |
[4] | Shijin Li, Chenglong Wang, Xiaoqing Gu. Governance of Artificial Intelligence Education: Logical Mechanism and Practical Approach [J]. Journal of East China Normal University(Educational Sciences), 2022, 40(9): 55-66. |
[5] | Hua Du, Xiaoqing Gu. Artificial Intelligence for Knowledge Understanding: An Empirical Study Aimed at Conceptual Change [J]. Journal of East China Normal University(Educational Sciences), 2022, 40(9): 67-77. |
[6] | Xiangjun Hao, Xue He. The Game and Integration between AI and Human in Knowledge Production and its Enlightenment to Education [J]. Journal of East China Normal University(Educational Sciences), 2022, 40(9): 78-89. |
[7] | Haoxiang Hou, Xianyi Zhang, Dan Wang. Can Educational Robots Improve Student Creativity: An Meta-analysis Based on 48 Experimental and Quasi-experimental Studies [J]. Journal of East China Normal University(Educational Sciences), 2022, 40(3): 99-111. |
[8] | Xin Yang. Trace on Calculation Method of Evaluation Reform of Education [J]. Journal of East China Normal University(Educational Sciences), 2022, 40(1): 19-29. |
[9] | Gang Cheng, Sihui Du, Qian Yu. Are Your Educational Expectations Rational? Research on Effects of Parent-Child Discrepancies in Educational Expectations on Academic Performance [J]. Journal of East China Normal University(Educational Sciences), 2022, 40(1): 74-87. |
[10] | Xiaoqing Gu, Hua Du, Hongchao Peng, Zhiting Zhu. The Theoretical Framework, Development and Future Prospect of Smart Education [J]. Journal of East China Normal University(Educational Sciences), 2021, 39(8): 20-32. |
[11] | Jiazhe Li, Yongmei Hu. A Study on the Relationship between Parental Learning Involvement and Academic Performance of Primary and Secondary School Students——Based on the Analysis of a Moderating Model with Mediator about Parent-Child Relationship and Students’ Learning Confidence [J]. Journal of East China Normal University(Educational Sciences), 2021, 39(7): 72-83. |
[12] | Yongmei Hu, Jing Yuan. Which is More Important for Students’ Academic Performance: Response to the Debate about the Role of Schooling and Parenting from the Coleman Report [J]. Journal of East China Normal University(Educational Sciences), 2021, 39(1): 1-25. |
[13] | Bao Wei, Jin Honghao. The Influence of the College Entrance Examination Reform on Freshman’s Academic Adaptation: Inhibition or Promotion? [J]. Journal of East China Normal University(Educational Sciences), 2020, 38(6): 20-33. |
[14] | Tang Yipeng, Wang Chuang, Hu Yongmei. How to Improve Students' Academic Performance: A Perspective of Learning and Teaching Strategies [J]. Journal of East China Normal University(Educational Sciences), 2020, 38(3): 93-105. |
[15] | Wu Honglin. Technological Progress and Educational Development: Two Possibilities of Pedagogy in the Age of Artificial Intelligence [J]. Journal of East China Normal University(Educationa, 2019, 37(5): 26-37. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||