华东师范大学学报(教育科学版) ›› 2022, Vol. 40 ›› Issue (11): 110-122.doi: 10.16382/j.cnki.1000-5560.2022.11.009
顾昕1, 毛梦琪1, 马淑风1, 陈森宇2
出版日期:
2022-11-01
发布日期:
2022-10-27
基金资助:
Xin Gu1, Mengqi Mao1, Shufeng Ma1, Senyu Chen2
Online:
2022-11-01
Published:
2022-10-27
摘要:
针对当前教育研究问题的复杂性、不确定性与动态性特征,本文提出使用贝叶斯网络方法分析教育实证研究数据。在研究范式上,贝叶斯网络结合了理论驱动与数据驱动的研究方法,根据教育研究理论与专家经验确定先验模型,通过后续采集的数据迭代模型,不断更新能够支持或反对理论模型的数据证据。在数据分析方法上,贝叶斯网络将变量或变量关系的不确定性纳入模型,以概率的方式给出精确的推断结论和预测信息。在模型应用上,贝叶斯网络能够在真实教学情境中实时评估学生的知识掌握、能力培养、素养发展等,为教学与学习过程的动态评估提供方法和技术上的支持。
顾昕, 毛梦琪, 马淑风, 陈森宇. 贝叶斯网络方法能为教育研究带来什么?[J]. 华东师范大学学报(教育科学版), 2022, 40(11): 110-122.
Xin Gu, Mengqi Mao, Shufeng Ma, Senyu Chen. What Can Bayesian Network Contribute to Educational Research?[J]. Journal of East China Normal University(Educational Sciences), 2022, 40(11): 110-122.
表 3
学生互助行为与同伴关系统计描述表"
互助行为 | | | | | | | |
讨论促进 | 46 (32.9%) | 57 (40.7%) | 43 (30.7%) | 36 (25.7%) | 36 (25.7%) | 27 (19.3%) | 30 (21.4%) |
行为支持 | 24 (17.1%) | 31 (22.1%) | 39 (27.9%) | 32 (22.9%) | 36 (25.7%) | 35 (25.0%) | 25 (17.9%) |
认知支持 | 75 (53.6%) | 64 (45.7%) | 71 (50.7%) | 73 (52.1%) | 69 (49.3%) | 69 (49.3%) | 73 (52.1%) |
情感支持 | 40 (28.6%) | 41 (29.3%) | 36 (25.7%) | 25 (17.9%) | 42 (30.0%) | 30 (21.4%) | 39 (27.9%) |
总互助行为 | 185 | 193 | 189 | 166 | 183 | 161 | 167 |
同伴关系提名 | 11 | 30 | |||||
同伴喜欢程度(低) | 41 | 50 | |||||
同伴喜欢程度(高) | 45 | 73 |
表 4
T1时刻贝叶斯网络模型条件概率表"
同伴关系提名=0 | 同伴关系提名=1 | ||||||
P(同伴关系提名) | 0.918 | 0.082 | |||||
同伴喜欢 程度=0 | 同伴喜欢 程度=1 | 同伴喜欢 程度=2 | 同伴喜欢 程度=0 | 同伴喜欢 程度=1 | 同伴喜欢 程度=2 | ||
P(同伴喜欢程度) | 0.418 | 0.527 | 0.055 | 0.015 | 0.015 | 0.884 | |
P(讨论促进) | 0 | 0.777 | 0.617 | 0.430 | 0.500 | 0.928 | 0.598 |
1 | 0.223 | 0.383 | 0.570 | 0.500 | 0.071 | 0.402 | |
P(行为支持) | 0 | 0.943 | 0.779 | 0.709 | 0.500 | 0.928 | 0.598 |
1 | 0.057 | 0.221 | 0.291 | 0.500 | 0.071 | 0.402 | |
P(认知支持) | 0 | 0.537 | 0.456 | 0.291 | 0.500 | 0.928 | 0.205 |
1 | 0.463 | 0.544 | 0.709 | 0.500 | 0.071 | 0.795 | |
P(情感支持) | 0 | 0.832 | 0.691 | 0.570 | 0.500 | 0.928 | 0.303 |
1 | 0.168 | 0.309 | 0.430 | 0.500 | 0.071 | 0.696 |
表 5
T7时刻贝叶斯网络模型条件概率表"
同伴关系提名=0 | 同伴关系提名=1 | ||||||
P(同伴关系提名) | 0.784 | 0.216 | |||||
同伴喜欢 程度=0 | 同伴喜欢 程度=1 | 同伴喜欢 程度=2 | 同伴喜欢 程度=0 | 同伴喜欢 程度=1 | 同伴喜欢 程度=2 | ||
P(同伴喜欢程度) | 0.155 | 0.680 | 0.165 | 0.006 | 0.333 | 0.661 | |
P(讨论促进) | 0 | 0.820 | 0.786 | 0.830 | 0.500 | 0.795 | 0.698 |
1 | 0.180 | 0.214 | 0.170 | 0.500 | 0.205 | 0.302 | |
P(行为支持) | 0 | 0.937 | 0.826 | 0.665 | 0.500 | 0.992 | 0.748 |
1 | 0.063 | 0.174 | 0.335 | 0.500 | 0.008 | 0.252 | |
P(认知支持) | 0 | 0.646 | 0.414 | 0.500 | 0.500 | 0.697 | 0.450 |
1 | 0.354 | 0.586 | 0.500 | 0.500 | 0.303 | 0.550 | |
P(情感支持) | 0 | 0.704 | 0.773 | 0.775 | 0.500 | 0.598 | 0.550 |
1 | 0.296 | 0.227 | 0.225 | 0.500 | 0.402 | 0.450 |
陈森宇, 毛梦琪, 吴双, 米热努尔, 黄汇, & 马淑风 (2021). 青少年在合作学习中的同伴互助行为研究. 第二十三届全国心理学学术会议摘要集, 516−517. | |
侯杰泰, 温忠麟, &成子娟. (2004). 结构方程模型及其应用. 北京: 教育科学出版社. | |
柳炳祥, 田原, 彭永康, & 邱娟 基于贝叶斯网络的人才培养模式绩效评价 计算机教育 2018 2 18 20 柳炳祥, 田原, 彭永康, & 邱娟. (2018). 基于贝叶斯网络的人才培养模式绩效评价. 计算机教育,(2),18—20. | |
马晓强, 彭文蓉, & 萨丽·托马斯 学校效能的增值评价——对河北省保定市普通高中学校的实证研究 教育研究 2006 10 77 84 马晓强, 彭文蓉, & 萨丽·托马斯. (2006). 学校效能的增值评价—对河北省保定市普通高中学校的实证研究. 教育研究,(10),77—84. | |
孟志远, 卢潇, & 胡凡刚 大数据驱动教育变革的理论路径与应用思考——首届中国教育大数据发展论坛探析 远程教育杂志 2017 35 2 9 18 孟志远, 卢潇, & 胡凡刚. (2017). 大数据驱动教育变革的理论路径与应用思考—首届中国教育大数据发展论坛探析. 远程教育杂志,35(2),9—18.
doi: 10.15881/j.cnki.cn33-1304/g4.2017.02.002 |
|
宋丽红 基于贝叶斯网的认知诊断模型构建 心理科学 2016 39 4 783 789 宋丽红. (2016). 基于贝叶斯网的认知诊断模型构建. 心理科学,39(4),783—789.
doi: 10.16719/j.cnki.1671-6981.20160403 |
|
温忠麟, 侯杰泰, & 张雷 调节效应与中介效应的比较和应用 心理学报 2005 37 2 268 274 温忠麟, 侯杰泰, & 张雷. (2005). 调节效应与中介效应的比较和应用. 心理学报,37(2),268—274. | |
闫志勇, 李明, 倪劲峰, & 周学海 贝叶斯网络在自适应教育超媒体中的应用 计算机工程与应用 2002 38 8 217 219 闫志勇, 李明, 倪劲峰, & 周学海. (2002). 贝叶斯网络在自适应教育超媒体中的应用. 计算机工程与应用,38(8),217—219.
doi: 10.3321/j.issn:1002-8331.2002.08.074 |
|
杨向东. (2014). 理论驱动的心理与教育测量学. 上海: 华东师范大学出版社. | |
杨现民, 郭利明, 王东丽, & 邢蓓蓓 数据驱动教育治理现代化: 实践框架, 现实挑战与实施路径 现代远程教育研究 2020 32 2 73 84 杨现民, 郭利明, 王东丽, & 邢蓓蓓. (2020). 数据驱动教育治理现代化: 实践框架, 现实挑战与实施路径. 现代远程教育研究,32(2),73—84. | |
张晓勇, 彭军 & 文孟飞 基于贝叶斯网络的网络交互教学成效评价系统 现代远程教育研究 2012 4 85 90 张晓勇, 彭军 & 文孟飞. (2012). 基于贝叶斯网络的网络交互教学成效评价系统. 现代远程教育研究,(4),85—90.
doi: 10.3969/j.issn.1009-5195.2012.04.014 |
|
Anderson, R. C., Chinn, C., Waggoner, M., & Nguyen, K. (1998). Intellectually stimulating story discussions. In J. Osborn & F. Lehr (Eds. ), Literacy for all: Issues in teaching and learning. (pp. 170–186). New York: Guilford. | |
Almond, R. Mislevy, R. Steinberg, L., Yan, D. & Williamson, D. (2015). Bayesian networks in educational assessment. New York: Springer. | |
Belland, B. R., Walker, A. E., & Kim, N. J A Bayesian network meta-analysis to synthesize the influence of contexts of scaffolding use on cognitive outcomes in STEM education Review of Educational Research 2017 87 6 1042 1081 Belland, B. R., Walker, A. E., & Kim, N. J. (2017). A Bayesian network meta-analysis to synthesize the influence of contexts of scaffolding use on cognitive outcomes in STEM education. Review of Educational Research, 87(6), 1042—1081.
doi: 10.3102/0034654317723009 |
|
Carmona, C., Castillo, G., & Millán, E Designing a dynamic Bayesian network for modeling students' learning styles IEEE International Conference on Advanced Learning Technologies 2008 346 350 Carmona, C., Castillo, G., & Millán, E. (2008). Designing a dynamic Bayesian network for modeling students' learning styles. IEEE International Conference on Advanced Learning Technologies, 346—350.
doi: 10.1109/ICALT.2008.116 |
|
De Campos, L. M., & Huete, J. F A new approach for learning belief networks using independence criteria International Journal of Approximate Reasoning 2000 24 1 11 37 De Campos, L. M., & Huete, J. F. (2000). A new approach for learning belief networks using independence criteria. International Journal of Approximate Reasoning, 24(1), 11—37.
doi: 10.1016/S0888-613X(99)00042-0 |
|
De Klerk, S, Veldkamp, B., & Eggen, T. Psychometric analysis of the performance data of simulation-based assessment: A systematic review and a Bayesian network example Computers & Education 2015 85 23 34 De Klerk, S, Veldkamp, B., & Eggen, T. (2015). Psychometric analysis of the performance data of simulation-based assessment: A systematic review and a Bayesian network example. Computers & Education, 85, 23—34.
doi: 10.1016/j.compedu.2014.12.020 |
|
García, P., Amandi, A., Schiaffino, S., & Campo, M. Evaluating Bayesian networks’ precision for detecting students’ learning styles Computers & Education 2007 49 3 794 808 García, P., Amandi, A., Schiaffino, S., & Campo, M. (2007). Evaluating Bayesian networks’ precision for detecting students’ learning styles. Computers & Education, 49(3), 794—808.
doi: 10.1016/j.compedu.2005.11.017 |
|
Geiger, D., Verma, T., & Pearl, J Identifying independence in Bayesian networks Networks 1990 20 5 507 534 Geiger, D., Verma, T., & Pearl, J. (1990). Identifying independence in Bayesian networks. Networks, 20(5), 507—534.
doi: 10.1002/net.3230200504 |
|
Grimm, K. J., Helm, J., Rodgers, D., & O'Rourke, H Analyzing cross-lag effects: A comparison of different cross-lag modeling approaches New directions for child and adolescent development 2021 2021 175 11 33 Grimm, K. J., Helm, J., Rodgers, D., & O'Rourke, H. (2021). Analyzing cross-lag effects: A comparison of different cross-lag modeling approaches. New directions for child and adolescent development, 2021(175), 11—33.
doi: 10.1002/cad.20401 |
|
Gupta, S. & Kim, H. Linking structural equation modeling to Bayesian networks: Decision support for customer retention in virtual communities European Journal of Operational Research 2008 190 3 818 833 Gupta, S. & Kim, H. (2008). Linking structural equation modeling to Bayesian networks: Decision support for customer retention in virtual communities. European Journal of Operational Research, 190(3), 818—833.
doi: 10.1016/j.ejor.2007.05.054 |
|
Huang, B. & Hew, K. F Implementing a theory-driven gamification model in higher education flipped courses: Effects on out-of-class activity completion and quality of artifacts Computers & Education 2018 125 254 272 Huang, B. & Hew, K. F. (2018). Implementing a theory-driven gamification model in higher education flipped courses: Effects on out-of-class activity completion and quality of artifacts. Computers & Education, 125, 254—272. | |
Kurilovas, E On data-driven decision-making for quality education Computers in Human Behavior 2020 107 105774 Kurilovas, E. (2020). On data-driven decision-making for quality education. Computers in Human Behavior, 107, 105774.
doi: 10.1016/j.chb.2018.11.003 |
|
Mandinach, E. B A perfect time for data use: Using data-driven decision making to inform practice Educational Psychologist 2012 47 2 71 85 Mandinach, E. B. (2012). A perfect time for data use: Using data-driven decision making to inform practice. Educational Psychologist, 47(2), 71—85.
doi: 10.1080/00461520.2012.667064 |
|
Mouri, K., Okubo, F., Shimada, A., & Ogata, H. (2016). Bayesian network for predicting students’ final grade using e-book logs in university education. In 2016 IEEE 16th International Conference on Advanced Learning Technologies (ICALT) (pp. 85−89). | |
Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible inference. San Mateo: Morgan Kaufmann. | |
Pearl, J Causal inference in statistics: An overview Statistics surveys 2009 3 96 146 Pearl, J. (2009). Causal inference in statistics: An overview. Statistics surveys, 3, 96—146. | |
Pietro, L., Mugion, R., Musella, F., Renzi, M., & Vicard, P. Reconciling internal and external performance in a holistic approach: A Bayesian network model in higher education Expert Systems with Applications 2015 42 5 2691 2702 Pietro, L., Mugion, R., Musella, F., Renzi, M., & Vicard, P. (2015). Reconciling internal and external performance in a holistic approach: A Bayesian network model in higher education. Expert Systems with Applications, 42(5), 2691—2702.
doi: 10.1016/j.eswa.2014.11.019 |
|
Pinto, P. C., Nagele, A., Dejori, M., Runkler, T. A., & Sousa, J. M Using a local discovery ant algorithm for Bayesian network structure learning IEEE transactions on evolutionary computation 2009 13 4 767 779 Pinto, P. C., Nagele, A., Dejori, M., Runkler, T. A., & Sousa, J. M. (2009). Using a local discovery ant algorithm for Bayesian network structure learning. IEEE transactions on evolutionary computation, 13(4), 767—779.
doi: 10.1109/TEVC.2009.2024142 |
|
Reichenberg, R Dynamic Bayesian networks in educational measurement: Reviewing and advancing the state of the field Applied Measurement in Education 2018 31 4 335 350 Reichenberg, R. (2018). Dynamic Bayesian networks in educational measurement: Reviewing and advancing the state of the field. Applied Measurement in Education, 31(4), 335—350.
doi: 10.1080/08957347.2018.1495217 |
|
Sabourin, J., Mott, B., & Lester, J. (2013). Utilizing dynamic Bayes nets to improve early prediction models of self-regulated learning. In S. Carberry, S. Weibelzahl, A. Micarelli, G. Semeraro (Eds. ), User modeling, adaptation, and personalization (pp. 228−241). New York: Springer. | |
Scanagatta, M., Salmerón, A., & Stella, F A survey on Bayesian network structure learning from data Progress in Artificial Intelligence 2019 8 4 425 439 Scanagatta, M., Salmerón, A., & Stella, F. (2019). A survey on Bayesian network structure learning from data. Progress in Artificial Intelligence, 8(4), 425—439.
doi: 10.1007/s13748-019-00194-y |
|
Scutari, M. (2009). Learning Bayesian networks with the bnlearn R package. arXiv preprint arXiv: 0908.3817. | |
Sinharay, S Model diagnostics for Bayesian networks Journal of Educational and Behavioral Statistics 2006 31 1 1 33 Sinharay, S. (2006). Model diagnostics for Bayesian networks. Journal of Educational and Behavioral Statistics, 31(1), 1—33.
doi: 10.3102/10769986031001001 |
|
Van de Schoot, R., Winter, S. D., Ryan, O., Zondervan-Zwijnenburg, M., & Depaoli, S A systematic review of Bayesian articles in psychology: The last 25 years Psychology Methods 2017 22 2 217 239 Van de Schoot, R., Winter, S. D., Ryan, O., Zondervan-Zwijnenburg, M., & Depaoli, S. (2017). A systematic review of Bayesian articles in psychology: The last 25 years. Psychology Methods, 22(2), 217—239.
doi: 10.1037/met0000100 |
|
Xenos, M Prediction and assessment of student behavior in open and distance education in computers using Bayesian networks Computer & Education 2004 43 345 359 Xenos, M. (2004). Prediction and assessment of student behavior in open and distance education in computers using Bayesian networks. Computer & Education, 43, 345—359. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||