|
陈宇帅, 温忠麟, 顾红磊. (2015). 因子混合模型: 潜在类别分析与因子分析的整合. 心理科学进展, 23 (3), 529- 538.
|
|
何妍, 袁柯曼, 张明明, 边玉芳. (2023). 父母控制亚型及其对青少年适应的影响. 华东师范大学学报(教育科学版), 41 (1), 25- 39.
|
|
黄菲菲, 张敏强, 崔雪平, 黄熙彤, 甘露. (2018). 家校关系类型对小学生学业成绩的影响: 基于潜在剖面分析. 教育研究与实验, (2), 88- 91.
|
|
黄声华, 尹弘飚, 靳玉乐. (2023). 家长教育卷入类型特征及其与中学生学科素养的关系: 基于PISA 2018中国香港及澳门数据的潜在类别分析. 华东师范大学学报(教育科学版), 41 (1), 50- 59.
|
|
廖友国, 王峥, 陈建文, 张妍, 张本钰. (2021). 初中生外化问题行为的潜在类别及其影响因素. 中国临床心理学杂志, 29 (2), 297- 300+305.
|
|
刘红云. (2019). 高级心理统计. 北京: 中国人民大学出版社.
|
|
邱皓政. (2008). 潜在类别模型的原理与技术. 北京: 教育科学出版社.
|
|
孙思雨, 许添舒, 孔企平. (2022). 基于潜在类别分析的小学生早期代数思维水平研究. 数学教育学报, 31 (1), 52- 58.
|
|
王碧瑶, 张敏强, 张洁婷, 胡俊. (2015). 基于转变矩阵描述的个体阶段性发展: 潜在转变模型. 心理研究, 8 (4), 36- 43.
doi: 10.3969/j.issn.2095-1159.2015.04.006
|
|
王孟成, 毕向阳. (2018a). 回归混合模型: 方法进展与软件实现. 心理科学进展, 26 (12), 2272- 2280.
|
|
王孟成, 毕向阳. (2018b). 潜变量建模与Mplus应用•进阶篇. 重庆: 重庆大学出版社.
|
|
王孟成, 邓俏文, 毕向阳, 叶浩生, 杨文登. (2017). 分类精确性指数Entropy在潜剖面分析中的表现: 一项蒙特卡罗模拟研究. 心理学报, 49 (11), 1473- 1482.
|
|
温聪聪, 朱红. (2021). 随机截距潜在转变分析(RI-LTA)——个案自我转变与个案间差异的分离. 心理科学进展, 29 (10), 1773- 1782.
|
|
温忠麟. (2016). 心理与教育统计(第二版). 广州: 广东高等教育出版社.
|
|
温忠麟, 方杰, 陈虹熹, 叶宝娟, 蔡保贞. (2022). 新世纪20年国内测验信度研究. 心理科学进展, 30 (8), 1682- 1691.
|
|
吴旻, 宋文琦, 梁丽婵. (2023). 农村小学生同伴攻击−受侵害类型及其学校适应: 基于潜在剖面分析. 华东师范大学学报(教育科学版), 41 (1), 40- 49.
|
|
尹奎, 彭坚, 张君. (2020). 潜在剖面分析在组织行为领域中的应用. 心理科学进展, 28 (7), 1056- 1070.
|
|
臧蓓蕾, 张俊. (2017). 基于潜在类别分析的方法探究3~5岁儿童心理数线发展的特点. 学前教育研究, (7), 49- 60.
|
|
张洁婷, 焦璨, 张敏强. (2010). 潜在类别分析技术在心理学研究中的应用. 心理科学进展, 18 (12), 1991- 1998.
|
|
张文明, 陈嘉晟. (2022). 中小学生肥胖问题研究: 校际差异及时间分配表征. 华东师范大学学报(教育科学版), 40 (2), 43- 56.
|
|
赵雪艳, 游旭群, 秦伟. (2023). 中学教师情绪劳动策略与职业幸福感指标的关系: 基于潜在剖面分析. 华东师范大学学报(教育科学版), 41 (1), 16- 24.
|
|
Asparouhov, T. & Muthén, B. O. (2014). Auxiliary variables in mixture modeling: Three-step approaches using Mplus. Structural Equation Modeling:A Multidisciplinary Journal, 21 (3), 329- 341.
doi: 10.1080/10705511.2014.915181
|
|
Asparouhov, T. , & Muthen, B. (2021). Auxiliary Variables in Mixture Modeling: Using the BCH method in Mplus to estimate a distal outcome model and an arbitrary secondary model. Mplus Web Notes: No. 21. Los Angeles, CA: Muthén & Muthén.
|
|
Bakk, Z., Oberski, D. L., & Vermunt, J. K. (2016). Relating latent class membership to continuous distal outcomes: Improving the LTB approach and a modified three-step implementation. Structural Equation Modeling:A Multidisciplinary Journal, 23 (2), 278- 289.
doi: 10.1080/10705511.2015.1049698
|
|
Bakk, Z, & Vermunt, J. K. (2016). Robustness of stepwise latent class modeling with continuous distal outcomes. Structural Equation Modeling:A Multidisciplinary Journal, 23 (1), 20- 31.
doi: 10.1080/10705511.2014.955104
|
|
Bandeen-Roche, K., Miglioretti, D. L., Zeger, S. L., & Rathouz, P. R. (1997). Latent variable regression for multiple discrete outcomes. Journal of the American Statistical Association, 92 (440), 1375- 1386.
doi: 10.1080/01621459.1997.10473658
|
|
Bolck, A., Croon, M., & Hagenaars, J. (2004). Estimating latent structure models with categorical variables: One-step versus three-step estimators. Political Analysis, 12 (1), 3- 27.
doi: 10.1093/pan/mph001
|
|
Clark, S. L. , & Muthén, B. O. (2009). Relating latent class analysis results to variables not included in the analysis. Retrieved from https://www.statmodel.com/download/relatinglca.pdf.
|
|
Collins, L. M. , & Lanza, S. T. (2010). Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences. Hoboken: John Wiley & Sons.
|
|
Gibson, W. A. (1959). Three multivariate models: Factor analysis, latent structure analysis, and latent profile analysis. Psychometrika, 24 (3), 229- 252.
doi: 10.1007/BF02289845
|
|
Hagenaars, J. A. , & McCutcheon, A. L. (2002). Applied Latent Class Analysis. United Kingdom: Cambridge University Press.
|
|
Huang, G. H., Wang, S. M., & Hsu, C. C. (2011). Optimization-based model fitting for latent class and latent profile analyses. Psychometrika, 76 (4), 584- 611.
doi: 10.1007/s11336-011-9227-3
|
|
Jung, T., & Wickrama, K. A. (2008). An introduction to latent class growth analysis and growth mixture modeling. Social and Personality Psychology Compass, 2 (1), 302- 317.
doi: 10.1111/j.1751-9004.2007.00054.x
|
|
Lanza, S. T., Tan, X., & Bray, B. C. (2013). Latent class analysis with distal outcomes: A flexible model-based approach. Structural Equation Modeling:A Multidisciplinary Journal, 20 (1), 1- 26.
doi: 10.1080/10705511.2013.742377
|
|
Lazarsfeld, P. F., & Henry, N. W. (1968). Latent Structure Analysis. Boston, MA: Houghton Mifflin.
|
|
Lubke, G., & Muthén, B. O. (2007). Performance of factor mixture models as a function of model size, covariate effects, and class-specific parameters. Structural Equation Modeling:A Multidisciplinary Journal, 14 (1), 26- 47.
doi: 10.1080/10705510709336735
|
|
McLachlan, G. J.. (1987). On bootstrapping the likelihood ratio test statistic for the number of components in a normal mixture model. Journal of the Royal Statistical Society, Series C, Applied Statistics, 36 (4), 318- 324.
|
|
Muthén, B. O, & Asparouhov, T. (2022). Latent transition analysis with random intercepts (RI-LTA). Psychological Methods, 27 (1), 1- 16.
doi: 10.1037/met0000370
|
|
Muthén, B. O, & Muthén, L. K. (2000). Integrating person-centered and variable-centered analyses: Growth mixture modeling with latent trajectory classes. Alcoholism:Clinical and Experimental Research, 24 (6), 882- 891.
doi: 10.1111/j.1530-0277.2000.tb02070.x
|
|
Muthén, L. K. , & Muthén, B. O. (1998−2022). Mplus User's Guide. Los Angeles, CA: Muthén & Muthén.
|
|
Nylund, K. L., Asparouhov, T., & Muthén, B. O. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A monte carlo simulation study. Structural Equation Modeling:A Multidisciplinary Journal, 14 (4), 535- 569.
doi: 10.1080/10705510701575396
|
|
Tein, J. Y., Coxe, S., & Cham, H. (2013). Statistical power to detect the correct number of classes in latent profile analysis. Structural Equation Modeling:A Multidisciplinary Journal, 20 (4), 640- 657.
doi: 10.1080/10705511.2013.824781
|
|
Vermunt, J. K. (2010). Latent class modeling with covariates: Two improved three-step approaches. Political Analysis, 18 (4), 450- 469.
doi: 10.1093/pan/mpq025
|