华东师范大学学报(教育科学版) ›› 2021, Vol. 39 ›› Issue (1): 1-25.doi: 10.16382/j.cnki.1000-5560.2021.01.001
• 特稿 • 下一篇
胡咏梅, 元静
出版日期:
2021-01-20
发布日期:
2021-01-18
基金资助:
Yongmei Hu, Jing Yuan
Online:
2021-01-20
Published:
2021-01-18
摘要:
自《科尔曼报告》公布至今已经过去了半个世纪,但对于学生学业成绩来说,学校投入与家庭投入哪个更重要的问题在国内外学术界依然没有达成共识。本文利用我国东部和中部5省16个城市中小学校大规模测评数据,采用广义教育生产函数方法,运用两水平线性模型,分析了学校投入和家庭投入要素对教育产出(以学生学业成绩为代理变量)的影响效应。同时,采用Shapley值和Owen值分解技术,识别出对学校教育产出有较大影响的投入要素,得出以下4个方面结论:第一,除生师比之外,办学条件和教师质量等学校投入要素对教育产出结果有显著的正效应。第二,父母参与、父母教育期望等家庭投入要素对教育产出结果有显著的正效应。第三,对于小学平均学业成绩而言,来自家庭的相关投入更重要;对于初中平均学业成绩而言,则是来自学校的相关投入更为重要。第四,相比学校办学条件,教师质量对中小学校平均学业成绩变异的贡献度更大;而且,相比小学,教师质量对初中学校平均学业成绩变异的贡献度更大。基于实证研究结论,提出提高我国中小学教育生产效率的5点建议:一是调整义务教育资源配置结构,优先保障初中阶段学校教育投入;二是改善义务教育阶段教师的工资待遇和工作环境,以吸引更多高素质人才投入义务教育事业;三是通过校外教师专业发展培训、校本教研合作等途径切实提高教师队伍的教学策略水平,尤其要重视提高初中教师的教学策略水平;四是政府和相关部门应尽快出台有关家庭教育的制度规范,强化父母在家庭教育中的主体责任,督促父母积极参与子女教育生产过程;五是学校和社区应广泛开展家庭教育讲座和家庭教育实践培训活动,引导家长树立正确的家庭教育观,掌握科学的养育子女的方法,以提高学校教育和家庭教育联合生产的效率。
胡咏梅, 元静. 学校投入与家庭投入哪个更重要?——回应由《科尔曼报告》引起的关于学校与家庭作用之争[J]. 华东师范大学学报(教育科学版), 2021, 39(1): 1-25.
Yongmei Hu, Jing Yuan. Which is More Important for Students’ Academic Performance: Response to the Debate about the Role of Schooling and Parenting from the Coleman Report[J]. Journal of East China Normal University(Educational Sciences), 2021, 39(1): 1-25.
表 1
变量说明"
变量名 | 变量说明与计分方式 |
结果变量 | |
标准化测验成绩 | 统一测试的语文和数学成绩,分别将四年级和八年级学生样本的语文和数学成绩标准化,然后求取标准化成绩的均值 |
学生水平 | |
性别 | 源自学生问卷:0=男,1=女 |
是否单亲 | 源自学生问卷:0=非单亲家庭,1=单亲家庭 |
是否独生子女 | 源自学生问卷:0=非独生子女,1=独生子女 |
家庭SES | 源自学生问卷:由父母受教育水平、父母职业地位、家庭经济资源合成 |
课外补习时间 | 源自学生问卷:1=没有,2=3小时以下,3=3~6小时,4=6~8小时,5=8小时及以上。在计量模型中,以“没有参加补习”为参照组,构建“3小时以下”和“3小时及以上”2个虚拟变量 |
父母参与学习 | 源自学生问卷:由4个题目构成,5点计分“每天或几乎每天”→“从不或几乎从不”,反向计分后求取均值 |
父母参与生活 | 源自学生问卷:由5个题目构成,5点计分“每天或几乎每天”→“从不或几乎从不”,反向计分后求取均值 |
父母教育期望 | 源自家长问卷:1=初中,2=中专或职业高中,3=普通高中,4=大专,5=大学本科,6=研究生。在计量模型中,以“本科以下”教育期望为参照组,定义为0,“本科及以上”教育期望定义为1 |
学校水平 | |
是否初中 | 0=小学,1=初中 |
家庭平均SES | 源自学生问卷:由学生层面SES汇总至学校层面家庭平均SES |
本科及以上学历 教师比例 | 源自教师问卷:0=本科以下学历,1=本科及以上学历。在计量模型中,汇总为学校层面本科及以上学历教师比例 |
高级职称教师比例 | 源自教师问卷:0=非高级职称,1=高级职称(小学包括一级、高级、正高级职称;初中包括高级和正高级职称)。在计量模型中,汇总为学校层面高级职称教师比例 |
教师平均教龄 | 源自教师问卷:少于1年定义为0.5年,20年以上定义为21年,其他各组取中值。在计量模型中,汇总为学校层面教师平均教龄 |
教师教学策略 | 源自学生问卷:教师教学策略量表由13个题目构成,5点计分:“从不”→“总是”,求取均值后,汇总为学校层面数据 |
生均教育经费 (单位:百元) | 源自校长问卷:由校长汇报的学校总经费收入与学生总数之比合成 |
薄弱学科教师充足度 | 源自校长问卷:小学包括6门学科 |
生师比 | 源自校长问卷:由校长汇报的学校学生数与教师数之比合成 |
表 4
学校投入对学生标准化测试成绩的影响"
固定效应 | 模型1 | 模型2 | 模型3 | 模型4 |
学校水平 | ||||
是否初中(1=是) | 0.107***(0.015) | 0.030(0.017) | 0.110***(0.021) | 0.078**(0.023) |
家庭平均SES | 0.471***(0.017) | 0.420***(0.017) | 0.229***(0.017) | 0.224***(0.018) |
本科及以上学历教师比例 | 0.268***(0.035) | 0.225***(0.035) | ||
高级职称教师比例 | 0.129**(0.038) | 0.099*(0.038) | ||
教师平均教龄 | 0.016***(0.002) | 0.015***(0.002) | ||
教师教学策略 | 0.435***(0.017) | 0.400***(0.017) | ||
生均教育经费(单位:百元) | 0.0007***(0.0001) | 0.0005***(0.0008) | ||
薄弱学科教师充足度 | 0.060***(0.011) | 0.028**(0.010) | ||
生师比 | ?0.007***(0.002) | ?0.001(0.002) | ||
学生水平 | ||||
性别 | 0.132***(0.003) | 0.132***(0.003) | 0.131***(0.003) | 0.131***(0.003) |
是否独生子女 | 0.102***(0.004) | 0.103***(0.004) | 0.102***(0.004) | 0.103***(0.004) |
是否单亲 | ?0.095***(0.006) | ?0.098***(0.006) | ?0.096***(0.006) | ?0.098***(0.006) |
家庭SES | 0.106***(0.003) | 0.109***(0.003) | 0.107***(0.003) | 0.110***(0.003) |
常数项 | ?0.429***(0.013) | ?0.546***(0.052) | ?2.551***(0.091) | ?2.062***(0.091) |
家庭投入变量a | 有 | 有 | 有 | 有 |
随机效应 | ||||
Level1 variance | 0.5354 | 0.5378 | 0.5350 | 0.5374 |
Level2 variance | 0.1419 | 0.1269 | 0.1026 | 0.0971 |
ICC | 0.2095 | 0.1909 | 0.1609 | 0.1531 |
pseudo R2 Level1b (effect size) | 0.194 | 0.207 | 0.238 | 0.240 |
pseudo R2 Level2b (effect size) | 0.423 | 0.466 | 0.564 | 0.576 |
Level1样本量 | 256180 | 239340 | 254246 | 237789 |
Level2样本量 | 2864 | 2754 | 2843 | 2738 |
表 5
家庭教育投入对学生标准化测试成绩的影响"
固定效应 | 模型5 | 模型6 | 模型7 | 模型8 | 模型9 | 模型10 |
学校水平 | ||||||
是否初中 (1=是) | 0.022 (0.023) | 0.015 (0.023) | ?0.035 (0.025) | 0.194*** (0.026) | 0.148*** (0.026) | 0.161*** (0.027) |
家庭平均SES | 0.273*** (0.018) | 0.270*** (0.018) | 0.221*** (0.018) | 0.271*** (0.018) | 0.271*** (0.018) | 0.221*** (0.018) |
学生水平 | ||||||
性别 | 0.163*** (0.003) | 0.164*** (0.003) | 0.132*** (0.003) | 0.161*** (0.003) | 0.161*** (0.003) | 0.129*** (0.003) |
是否独生子女 | 0.111*** (0.004) | 0.108*** (0.004) | 0.104*** (0.004) | 0.112*** (0.004) | 0.111*** (0.004) | 0.103*** (0.004) |
是否单亲 | ?0.121*** (0.006) | ?0.121*** (0.006) | ?0.100*** (0.006) | ?0.122*** (0.006) | ?0.118*** (0.006) | ?0.098*** (0.006) |
家庭SES | 0.141*** (0.003) | 0.140*** (0.003) | 0.112*** (0.003) | 0.142*** (0.003) | 0.138*** (0.003) | 0.109*** (0.003) |
课外补习-3小时以下 | ?0.060*** (0.004) | ?0.078*** (0.004) | ||||
课外补习-3小时及以上 | 0.048*** (0.004) | 0.026*** (0.004) | ||||
父母参与子女学习 | 0.019*** (0.002) | 0.007** (0.003) | ||||
父母参与子女学习*初中 | ?0.051*** (0.003) | ?0.053*** (0.004) | ||||
父母参与子女生活 | 0.028*** (0.002) | 0.026*** (0.003) | ||||
父母参与子女生活*初中 | ?0.038*** (0.003) | ?0.009* (0.004) | ||||
父母教育期望-本科及以上 | 0.544*** (0.008) | 0.539*** (0.008) | ||||
父母教育期望*初中 | 0.136*** (0.010) | 0.145*** (0.010) | ||||
常数项 | ?2.062*** (0.091) | ?2.072*** (0.091) | ?2.436*** (0.089) | ?2.099*** (0.091) | ?2.100*** (0.091) | ?2.483*** (0.089) |
学校投入变量a | 有 | 有 | 有 | 有 | 有 | 有 |
随机效应 | ||||||
Level 1 variance | 0.5794 | 0.5778 | 0.5398 | 0.5776 | 0.5780 | 0.5362 |
Level 2 variance | 0.1033 | 0.1029 | 0.0979 | 0.1033 | 0.1029 | 0.0974 |
ICC | 0.1513 | 0.1512 | 0.1535 | 0.1517 | 0.1511 | 0.1537 |
pseudo R2 Level1b (effect size) | 0.197 | 0.199 | 0.240 | 0.197 | 0.196 | 0.241 |
pseudo R2 Level2b (effect size) | 0.563 | 0.563 | 0.577 | 0.559 | 0.560 | 0.575 |
Level 1样本量 | 260356 | 259683 | 241221 | 257762 | 257474 | 237789 |
Level 2样本量 | 2745 | 2745 | 2738 | 2745 | 2745 | 2738 |
表 6
学校投入与家庭投入的Shapley值和Owen值分解结果"
小学 | 初中 | |||||||
shapley 值分解 R2(%) | Owen值 分解1组群 R2(%) | Owen值 分解2组群 R2(%) | Owen值 分解3组群 R2(%) | shapley值 分解R2(%) | Owen值 分解1组群 R2(%) | Owen值 分解2组群 R2(%) | Owen值 分解3组群 R2(%) | |
本科级及以上学历 教师比例 | 4.23 | 49.60 | 40.04 | 41.11 | 6.15 | 53.30 | 48.28 | 43.44 |
高级职称教师比例 | 5.80 | 7.80 | ||||||
教师平均教龄 | 4.80 | 6.77 | ||||||
教师教学策略 | 17.03 | 20.30 | ||||||
生均教育经费 (单位:百元) | 4.76 | 12.84 | 2.31 | 6.74 | ||||
薄弱学科教师充足度 | 4.99 | 1.76 | ||||||
生师比 | 1.07 | 0.48 | ||||||
父母参与子女学习 | 9.29 | 50.40 | 47.12 | 28.76 | 7.31 | 46.70 | 44.98 | 25.36 |
父母参与子女生活 | 13.44 | 6.97 | ||||||
父母教育期望-本科及以上比例 | 13.06 | 16.11 | ||||||
平均课外补习时间 | 2.30 | 3.29 | 5.38 | 7.51 | ||||
家庭平均SES | 19.23 | 26.84 | 18.65 | 23.68 |
埃里克•哈努谢克, 卢德格尔•沃斯曼因.(2017). 国家的知识资本[M]. 银温泉等译. 北京: 中信出版社. | |
方晨晨, 胡咏梅, 张平平. 小学生能从课后学习时间中受益吗. 湖南师范大学教育科学学报, (2018). (1), 69- 77. | |
国家卫生健康委员会编. (2018). 中国流动人口发展报告2018. 北京: 中国人口出版社. | |
马克•贝磊 (2000). 教育全成本核算. 胡文斌译. 北京: 北京师范大学出版社. | |
M.卡诺依(2000). 教育经济学国际百科全书. 闵维方译. 北京: 高等教育出版社. | |
和学新. 教学策略的概念, 结构及其运用. 教育研究, (2000). (12), 54- 58. | |
胡咏梅. (2007) 学校资源配置与学生学业成绩关系研究——基于西部五省区农村中小学的实证分析. 北京: 北京师范大学. | |
胡咏梅, 杜育红. 中国西部农村初级中学教育生产函数的实证研究. 教育与经济, (2008). (3), 1- 7.
doi: 10.3969/j.issn.1003-4870.2008.03.001 |
|
胡咏梅, 杜育红. 中国西部农村小学教育生产函数的实证研究. 教育研究, (2009). 30 (7), 58- 67. | |
胡咏梅, 唐一鹏. “后4%时代”的教育经费应当投向何处?——基于跨国数据的实证研究. 北京师范大学学报(社会科学版), (2014). (05), 13- 24. | |
胡咏梅, 范文凤, 丁维莉. “影子教育”会扩大教育结果不均等吗?——基于PISA 2012数据的中国、日本、韩国比较研究. 教育经济评论, (2017). (05), 45- 73. | |
胡咏梅, 唐一鹏. 学习策略与教学策略哪个更重要?. 北京师范大学学报(社会科学版), (2018). 267 (03), 42- 57. | |
李波. 父母参与对子女发展的影响——基于学业成绩和非认知能力的视角. 教育与经济, (2018). (03), 54- 64.
doi: 10.3969/j.issn.1003-4870.2018.03.009 |
|
李斌, 张文静, 辛涛. 学校教育资源对科学素养成绩影响的跨文化比较——以中国香港、日本、芬兰和美国学生PISA成绩为例. 湖南师范大学社会科学学报, (2010). 39 (06), 91- 96.
doi: 10.3969/j.issn.1000-2529.2010.06.019 |
|
李春玲. 社会政治变迁与教育机会不平等——家庭背景及制度因素对教育获得的影响(1940-2001). 中国社会科学, (2003). (3), 86- 98. | |
李佳丽, 胡咏梅, 范文凤. 家庭背景、影子教育与学生学业成绩: 基于Wisconson模型的经验研究. 教育经济评论, (2016). (1), 50- 66. | |
李佳丽, 薛海平. 父母参与、课外补习和中学生学业成绩. 教育发展研究, (2019). 39 (02), 15- 22. | |
李佳丽, 何瑞珠. 家庭教育时间投入、经济投入和青少年发展: 社会资本、文化资本和影子教育阐释. 中国青年研究, (2019). (08), 97- 105.
doi: 10.3969/j.issn.1002-9931.2019.08.014 |
|
李祥云, 张建顺. 公共教育投入对学校教育结果的影响——基于湖北省70所小学数据的实证研究. 中南财经政法大学学报, (2018). 231 (06), 82- 89+161. | |
李忠路, 邱泽奇. 家庭背景如何影响儿童学业成就?——义务教育阶段家庭社会经济地位影响差异分析. 社会学研究, (2016). (4), 121- 144. | |
庞维国, 徐晓波, 林立甲, et al. 家庭社会经济地位与中学生学业成绩的关系研究. 全球教育展望, (2013). (2), 12- 21. | |
唐一鹏, 王闯, 胡咏梅. 如何提升中小学生的学业成绩?——基于学习策略与教学策略改进的视角. 华东师范大学学报(教育科学版), (2020). 38 (03), 93- 105. | |
王国英, 沃建中. 小学语文教师教学策略的结构. 心理发展与教育, (2000). (03), 60- 63. | |
王云峰, 郝懿, 李美娟. 小学生课业负担与学业成绩的关系研究. 中国教育学刊, (2014). (10), 59- 63. | |
王红, 陈纯槿, 杜育红. 西部农村小学学校效能及其影响因素研究. 教育研究, (2011). 32 (01), 61- 67. | |
陶东杰. 同胞数量与青少年认知能力: 资源稀释还是生育选择?. 教育与经济, (2019). (03), 29- 39.
doi: 10.3969/j.issn.1003-4870.2019.03.004 |
|
薛海平. (2007). 中国西部教育生产函数研究—甘肃农村初中学生成绩影响因素分析. 北京: 北京大学. | |
薛海平, 王蓉. 教育生产函数与义务教育公平. 教育研究, (2010). 31 (01), 9- 17. | |
薛海平. 家庭资本与教育获得: 基于影子教育中介效应分析. 教育与经济, (2018). (4), 69- 78.
doi: 10.3969/j.issn.1003-4870.2018.04.009 |
|
杨文杰, 范国睿. 教育机会均等研究的问题、因素与方法: 《科尔曼报告》以来相关研究的分析. 教育学报, (2019). 15 (02), 117- 130. | |
张咏梅, 郝懿, 李美娟. 教师因素、学生因素对学生学业成绩影响的实证研究——基于大规模测验数据的多层线性模型分析. 教师教育研究, (2012). 24 (04), 56- 62. | |
张文静, 辛涛, 康春花. 教师变量对小学四年级数学成绩的影响: 一个增值性研究. 教育学报, (2010). 6 (02), 69- 76.
doi: 10.3969/j.issn.1673-1298.2010.02.011 |
|
郑磊, 翁秋怡, 龚欣. 学前教育与城乡初中学生的认知能力差距——基于CEPS数据的研究. 社会学研究, (2019). 34 (03), 122- 145. | |
赵必华. 影响学生学业成绩的家庭与学校因素分析. 教育研究, (2013). 34 (03), 88- 97. | |
张志勇, 贾瑜. 自信与反思: 从PISA 2018看我国基础教育改革走向. 中国教育学刊, (2020). (1), 1- 6. | |
Blau, P. M., & Duncan O. D. (1967). The American Occupational Structure. New York: Wiley. | |
Bowles, S., Gintis, H., & Osborne, M. The determinants of individual earnings: skills, preferences, and schooling. Journal of Economic Literature, (2000). 39, 1137- 1176. | |
Buchmann, C., Condron, D., & Roscigno, V. Shadow Education, American Style: Test Preparation, the SAT and College Enrollment. Social Forces, (2010). 89 (2), 435- 461.
doi: 10.1353/sof.2010.0105 |
|
Caldas, S. J., & Bankston, C. Effect of school population socioeconomic status on individual academic achievement. Journal of Educational Research, (1997). 90 (5), 269- 277.
doi: 10.1080/00220671.1997.10544583 |
|
Caro, D.H., Lenkeita, J., & Kyriakides L. Teaching strategies and differential effectiveness across learning contexts: Evidence from PISA 2012. Studies in Educational Evaluation, (2016). 49, 30- 41.
doi: 10.1016/j.stueduc.2016.03.005 |
|
Clotfelter, C. T., Ladd, H.F., & Vigdor, J. L. Teacher credentials and student achievement: Longitudinal analysis with student fixed effects. Economics of Education Review, (2007). 26 (6), 673- 682.
doi: 10.1016/j.econedurev.2007.10.002 |
|
Chiappero-Martinetti, E., & Sabadash, A. (2014). The Capability Approach, Integrating Human Capital and Human Capabilities in Understanding the Value of Education (pp. 213-214), London: Palgrave Macmillan. | |
Chiu, M. M., Chow, W. Y., & Mcbride-Chang, C. Universals and specifics in learning strategies: explaining adolescent mathematics, science, and reading achievement across 34 countries. Learning & Individual Differences, (2007). 17 (4), 344- 365. | |
Coleman, J. S., Campbell, E. Q., Hobson, C. F., & et al. (1966). Equality of Educational Opportunity. Washington DC: U.S. Dept. of Health, Education, and Welfare, Office of Education. | |
Coleman, J. S. Families and Schools. Educational Researcher, (1987). 16 (6), 32- 38.
doi: 10.3102/0013189X016006032 |
|
Coleman, J. S. Social Capital in the Creation of Human Capital. American Journal of Sociology, (1988). 94, S95- S120.
doi: 10.1086/228943 |
|
Dang, H.A. The determinants and impact of private tutoring classes in Vietnam. Economics of Education Review, (2007). 26 (6), 683- 698.
doi: 10.1016/j.econedurev.2007.10.003 |
|
Davis-Kean, P. E. The Influence of Parent Education and Family Income on Child Achievement: The Indirect Role of Parental Expectations and the Home Environment. J Fam Psychol, (2005). 19 (2), 294- 304.
doi: 10.1037/0893-3200.19.2.294 |
|
Dincer, M. A, & Uysal, G. The determinants of student achievement in Turkey. International Journal of Educational Development, (2010). 30 (6), 592- 598.
doi: 10.1016/j.ijedudev.2010.05.005 |
|
Fan, X. Parental Involvement and Students' Academic Achievement: A Growth Modeling Analysis. The Journal of experiment education, (2001). 70 (1), 27- 61.
doi: 10.1080/00220970109599497 |
|
Greenwald, R., Hedges, L., & Laine, R. The Effect of School Resources on Student Achievement. Review of Educational Research, (1996). 66 (3), 361- 396.
doi: 10.3102/00346543066003361 |
|
Grubb, W. N. Multiple Resources, Multiple Outcomes: Testing the “Improved” School Finance With NELS88. American Educational Research Journal, (2008). 45 (1), 104- 144.
doi: 10.3102/0002831207308636 |
|
Hango, D. Parental investment in childhood and educational qualifications: Can greater parental involvement mediate the effects of socioeconomic disadvantage?. Social Science Research, (2007). 36 (4), 1371- 1390.
doi: 10.1016/j.ssresearch.2007.01.005 |
|
Hanushek, E. A. The impact of differential expenditures on school performance. Educational Researcher, (1989). 18 (4), 45- 65.
doi: 10.3102/0013189X018004045 |
|
Hanushek, E. A. Assessing the effects of school resources on student performance: an update. Educational Evaluation & Policy Analysis, (1997). 19 (2), 141- 164. | |
Hanushek E A. The Economics of Schooling: Production and Efficiency in Public Schools. Journal of Economic Literature, (1986). 24 (3), 1141- 1177. | |
Hanushek, E.A., & Woessmann L. How Much Do Educational Outcomes Matter in OECD Countries?. Economic Policy, (2011). 26 (67), 427- 491.
doi: 10.1111/j.1468-0327.2011.00265.x |
|
Hanushek, E.A. Economic Growth in Developing Countries: The Role of Human Capita. Economics of Education Review, (2013). (37), 204- 212. | |
Heckman, J., Stixrud, J., & Urzua, S. The Effects of Cognitive and Noncognitive Abilities on Labor Market Outcomes and Social Behavior. Journal of Labor Economics, (2006). 24 (3), 411- 482.
doi: 10.1086/504455 |
|
Hedges, L. V., Laine R D, & Greenwald, R. Does money matter? a meta-analysis of studies of the effects of differential school inputs on student outcomes. Educational Researcher, (1994). 23 (3), 5- 14.
doi: 10.3102/0013189X023003005 |
|
Houtenville, A., & Conway, K. Parental Effort, School Resources, and Student Achievement. Journal of Human Resources, (2008). 43 (2), 437- 453.
doi: 10.1353/jhr.2008.0027 |
|
Holmlund, H., Mcnally, S., & Viarengo, M. G. Does Money matter for Schools?. Economics of Education Review, (2010). 29 (6), 1154- 1164.
doi: 10.1016/j.econedurev.2010.06.008 |
|
Ho, S C. Parent Involvement: A Comparison of Different Definitions and Explanations. Chinese University Education Journal, (1995). 23, 39- 68. | |
Huettner, F., & Sunder, M. Axiomatic arguments for decomposing goodness of fit according to Shapley and Owen values. Electronic Journal of Statistics, (2012). 6, 1239- 1250.
doi: 10.1214/12-EJS710 |
|
Kaplan, D. S., Liu X., & Kaplan, H. B. Influence of parents' self-feelings and expectations on children’s academic performance. Journal of Educational Research, (2001). 94 (6), 360- 370.
doi: 10.1080/00220670109598773 |
|
Knoeppel, R., Verstegen, D., & Rinehart, J. What Is the Relationship Between Resources and Student Achievement? A Canonical Analysis. Journal of Education Finance, (2007). 33 (100), 183- 202. | |
Lamdin, D. Evidence of student attendance as an independent variable in education production functions. Journal of Educational Research, (1996). 89 (3), 155- 162.
doi: 10.1080/00220671.1996.9941321 |
|
Lau, Y. (2011). Parental involvement in early childhood education and children’s readiness for school: a longitudinal study of Chinese parents in Hong Kong and Shenzhen. Hong Kong, The University of Hong Kong. | |
Lounkaew, K. Explaining urban–rural differences in educational achievement in Thailand: Evidence from PISA literacy data. Economics of Education Review, (2013). (37), 213- 225. | |
Mark Bray. (1999). The Shadow Education System. Paris: Unesco International Institute for Educational Planning. | |
Mark Bray, Zhan, S., Lykins, C., & et al. Differentiated demand for private supplementary tutoring: patterns and implications in Hong Kong secondary education. Economics of Education Review, (2014). (38), 24- 37. | |
Mancebón, M, Calero, J., Choi, Á., & Ximénez-de-Embún, D. P. The efficiency of public and publicly subsidized high schools in Spain: Evidence from PISA-2006. Journal of the Operational Research Society, (2012). 63, 1516- 1533.
doi: 10.1057/jors.2011.156 |
|
Mcewan, P. J. Peer effects on student achievement: evidence from Chile. Economics of Education Review, (2003). 22 (2), 131- 141.
doi: 10.1016/S0272-7757(02)00005-5 |
|
Monk, D. H. Education productivity research: an update and assessment of its role in education finance reform. Educational Evaluation and Policy Analysis, (1992). 14 (4), 307- 332.
doi: 10.3102/01623737014004307 |
|
Murnane, R. J. Priorities for federal education statistics. College Entrance Examinations, (1985). 26. | |
Nicoletti, C, & Rabe, B. The effect of school spending on student achievement: addressing biases in value-added models. Journal of the Royal Statistical Society, (2017). 181 (2), 487- 515. | |
OECD (2019). Education at a Glance: OECD Indicators. Paris: OECD Publishing. | |
Ferguson, R. F. Paying for Public Education: New Evidence on How and Why Money Matters. Harvard Journal on Legislation, (1991). 28 (2), 465- 499. | |
Rivkin, S. G., Hanushek, E. A., & Kain, J. F. Teachers, schools and academic achievement. Econometrica, (2005). 73 (2), 417- 458.
doi: 10.1111/j.1468-0262.2005.00584.x |
|
Robinson, V. M. J., Lloyd, C. A., & Rowe, K. J. The impact of leadership on student outcomes: An analysis of the differential effects of leadership types. Educational administration quarterly, (2008). 44 (5), 635- 674.
doi: 10.1177/0013161X08321509 |
|
Sanders, W. L., Horn, S. P. Research Findings from the Tennessee Value-Added Assessment System (TVAAS) Database: Implications for Educational Evaluation and Research. Journal of Personnel Evaluation in Education, (1998). 12 (3), 247- 256.
doi: 10.1023/A:1008067210518 |
|
Sanders, W. L. Value-added assessment from student achievement data: opportunities and hurdles create national evaluation institute July 21, 2000. Journal of Personnel Evaluation in Education, (2000). 14 (4), 329- 339.
doi: 10.1023/A:1013008006096 |
|
Schroeder, C. M., Scott, T. P., Tolson, H., & et al. A meta-analysis of national research: Effects of teaching strategies on student achievement in science in the United States. Journal of Research in Science Teaching, (2007). 44 (10), 1436- 1460.
doi: 10.1002/tea.20212 |
|
Sewell, W. H., & Shah, V. P. Parents’ education and children’s educational aspirations and achievements. American Sociological Review, (1968). 33 (2), 191- 209.
doi: 10.2307/2092387 |
|
Smyth, E. The more, the better? intensity of involvement in private tuition and examination performance. Educational Research & Evaluation, (2008). 14 (5), 465- 476. | |
Spera, C., Wentzel, K. R., & Matto, H. C. Parental aspirations for their children’s educational attainment: relations to ethnicity, parental education, children's academic performance, and parental perceptions of school climate. Journal of Youth and Adolescence, (2009). 38 (8), 1140- 1152.
doi: 10.1007/s10964-008-9314-7 |
|
Stewart, E. B. School Structural Characteristics, Student Effort, Peer Associations, and Parental Involvement The Influence of School- and Individual-Level Factors on Academic Achievement. Education & Urban Society, (2007). 40 (2), 179- 204. | |
Sheldon, S. B., & Epstein, J. L. Involvement counts: family and community partnerships and mathematics achievement. Journal of Educational Research, (2005). 98 (4), 196- 207.
doi: 10.3200/JOER.98.4.196-207 |
|
Teachman, J. D. Family background, educational resources, and educational attainment. American Sociological Review, (1987). 52 (4), 548- 557.
doi: 10.2307/2095300 |
|
Topor, D. R., Keane, S. P., Shelton, T. L., & et al. Parent Involvement and Student Academic Performance: A Multiple Mediational Analysis. Journal of Prevention & Intervention in the Community, (2010). 38 (3), 183- 197. | |
Velz, E., Schiefelbein, E., & Valenzuela, J. (1993). Factors affecting achievement in primary education. HRO Working Paper No.2. Washington, DC: The World Bank. | |
Witte, K. D., & Kortelainen, M. What explains the performance of students in a heterogeneous environment? conditional efficiency estimation with continuous and discrete environmental variables. Applied Economics, (2013). 45 (16-18), 2401- 2412. | |
Wossmann, L. Schooling Resources, Educational Institutions and Student Performance: the International Evidence. Oxford Bulletin of Economics & Statistics, (2003). 65 (2), 117- 170. |
[1] | 雷浩, 杨春明. 数字教材与纸质教材,哪个更有利于学生学习?[J]. 华东师范大学学报(教育科学版), 2024, 42(12): 99-115. |
[2] | 雷浩, 李雪. 数字工具支持的教学对学生学习结果有何影响?——来自137项实验与准实验的元分析证据[J]. 华东师范大学学报(教育科学版), 2022, 40(11): 92-109. |
[3] | 姜怡. 高中生学习动机发展模态及其对学业成绩的影响[J]. 华东师范大学学报(教育科学版), 2022, 40(11): 80-91. |
[4] | 张静. 智商与情商哪个对学习更重要?[J]. 华东师范大学学报(教育科学版), 2022, 40(11): 69-79. |
[5] | 成刚, 杜思慧, 余倩. “望子成龙”有效吗?——基于亲子教育期望偏差对学业成绩的影响研究[J]. 华东师范大学学报(教育科学版), 2022, 40(1): 74-87. |
[6] | 李佳哲, 胡咏梅. 家长学习参与和中小学生学业成绩的关系研究——基于亲子关系和学习自信心的有中介的调节模型分析[J]. 华东师范大学学报(教育科学版), 2021, 39(7): 72-83. |
[7] | 魏易, 罗滨, 林秀艳, 杨智君, 王梦. 区域教研对学生学业成绩影响的实证研究——以北京市海淀区为例[J]. 华东师范大学学报(教育科学版), 2021, 39(5): 12-54. |
[8] | 曾昭炳, 姚继军. 寻找“最佳证据”:如何运用元分析进行文献综述——以STEM教育对学生成绩的影响研究为例[J]. 华东师范大学学报(教育科学版), 2020, 38(6): 70-85. |
[9] | 唐一鹏, 王闯, 胡咏梅. 如何提升中小学生的学业成绩?——基于学习策略与教学策略改进的视角[J]. 华东师范大学学报(教育科学版), 2020, 38(3): 93-105. |
[10] | 刘坚, 赵利曼, 杜宵丰, 徐冠兴. 高中生睡眠时间与高学业成绩的理想匹配模式探究及预警[J]. 华东师范大学学报(教育科学版), 2020, 38(3): 71-79. |
[11] | 赵晨, 陈思, 曹艳, [美]凯瑟琳•斯诺, 卢迈. 教育精准扶贫:“一村一园”计划对农村儿童学业成绩的长效影响研究[J]. 华东师范大学学报(教育科学版), 2020, 38(2): 114-125. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||