陈英和.(2015).儿童数量表征与数概念的发展特点及机制.心理发展与教育,31(1),21-28. 陈英和,赖颖慧.(2013).儿童非符号数量表征的特点及作用探析.北京师范大学学报(社会科学版),1,33-41. 赖颖慧,陈英和,陈聪. (2012).视知觉线索对幼儿小数离散数量表征的影响. 心理发展与教育,4,337-344. 刘国芳,辛自强.(2012).数字线估计研究:"模型"背后的策略.心理研究,5(2),27-33. 卢淳,郭红力,司继伟,孙燕. (2014). 不同数字线下儿童与成人分数估计的表征模式. 心理发展与教育, 30(5), 449-456. 徐华.(2011).幼儿线性数量表征的形成及其机制(博士学位论文).北京师范大学,北京. 徐华,陈英和.(2012).儿童数字线估计研究的述评与前瞻.心理研究,5(5),46-50. 张丽,卢彩芳,杨新荣.(2014).3-6年级儿童整数数量表征与分数数量表征的关系.心理发展与教育,1,1-8. 周广东,莫雷,温红博.(2009).儿童数字估计的表征模式与发展.心理发展与教育,4,21-29. Bailey, D.H., Siegler, R.S., & Geary, D.C.(2014). Early predictors of middle school fraction knowledge. Developmental Science, 17, 775-785. Booth, J.L., & Siegler, R.S.(2006). Developmental and individual differences in pure numerical estimation. Developmental Psychology, 42, 189-201. Brysbaert, M.(2004). Number recognition in different formats. In J. I. D Campbell, (Ed.), Handbook of Mathematical Cognition (pp. 23-42). Psychology Press:New York. Bulthé, J., De Smedt, B., & Op de Beeck, H.(2014). Format-dependent representations of symbolic and non-symbolic numbers in the human cortex as revealed by multi-voxel pattern analyses. Neuro Image, 87, 311-322. Butterworth, B(2010). Foundational numerical capacities and the origins of dyscalculia. Trends in Cognitive Sciences, 14,534-541. Cantlon, J. F., Safford, K. E., & Brannon, E. M. (2010).Spontaneous analog number representations in 3-year-old children. Developmental Science, 13, 289-297. Cohen, K. R., Lammertyn, J., & Izard, V.(2008). Are numbers special? An overview of chronometric, neuro imaging, developmental and comparative studies of magnitude representation. Progress in Neurobiology, 84, 132-147. Dehaene, S. (2008). Symbols and quantities in parietal cortex:Elements of a mathematical theory of number representation and manipulation. In P. Haggard, Y. Rossetti, & Y.M.Kawato (Eds.), Sensorimotor foundations of higher cognition, attention, and performance (Attention and Performance Series), 22 (pp. 527-574). New York:Oxford University Press. Dehaene, S., Izard, V., Spelke, E., Pica, P. (2008). Log or linear? Distinct intuitions of the number scale in Western and Amazonian indigene cultures. Science, 320, 1217-20. Dewind, N.K., & Brannon, E.M.(2012). Malleability of the approximate number system:Effects of feedback and training. Frontiers in Human Neuroscience,6, 68. Duncan, G.J., Dowsett, C.J., Claessens, A., Magnuson, K., Huston, A.C., & Klebanov, P. et al.(2007).School readiness and later achievement. Developmental Psychology, 43,1428-1446. Fazio, L.K., Bailey, D.H., Thompson, C.A., & Siegler, R.S.(2014). Relations of different types of numerical magnitude representations to each other and to mathematics achievement. Journal of Experimental Child Psychology, 123, 53-72. Feigenson, L., Dehaene, S., & Spelke, E.(2004). Core systems of number. Trends in Cognitive Sciences, 8, 307-314. Fischer, M.H., & Brugger, P.(2011). When digits help digits:Spatial-numerical associations point to finger counting as prime examples of embodied cognition. Frontiers in Psychology, 2, 260. Friso-van den Bos, I., van der Ven, S.H.G., Kroesbergen, E.H.,& Van Luit, J.E.H.(2013). Working memory and mathematics in primary school children:A meta-analysis. Educational Research Review, 10, 29-44. Fuchs, L.S., Schumacher, R.F., Long, J., Namkung, J., Hamlett,C.L. et al.(2013). Improving at-risk learners' understanding of fractions. Journal of Educational Psychology,105,683-700. Fuhs, M.W., & McNeil, N.M.(2013). ANS acuity and mathematics ability in preschoolers from low-income homes:Contributions of inhibitory control. Developmental Science,16,136-148. Geary, D.C., Hoard, M.K., Byrd-Craven, J., Nugent, L., & Numtee, C.(2007). Cognitive mechanisms underlying achievement deficits in children with mathematical learning disability. Child Development, 78, 1343-1359. Gilmore, C.K., McCarthy, S.E., & Spelke, E.S.(2010). Nonsymbolic arithmetic abilities and mathematics achievement in the first year of formal schooling. Cognition,115, 394-406. Halberda, J., Ly, R., Wilmer, J.B., Naiman, D.Q., & Germine, L. (2012). Number sense across the Life span as revealed by a massive Internet-based sample. Proceedings of the National Academy of Sciences of the United States of America, 109,11116-11120. Halberda, J., Mazzocco, M.M.M., & Feigenson, L.(2008).Individual differences in non-verbal number acuity correlate with math achievement. Nature,455, 665-668. Hyde, D.C., Khanum, S., & Spelke, E.S.(2014). Brief nonsymbolic, approximate number practice enhances subsequentexact symbolic arithmetic in children. Cognition,131,92-107. Jacob, S.N., & Nieder, A.(2009). Notation-independent representation of fractions in the human parietal cortex. Journal of Neuroscience,29, 4652-4657. Jacob, S.N., Vallentin, D., & Nieder, A.(2012). Relating magnitudes:The brain's code for proportions. Trends in Cognitive Sciences,16, 157-166. Jordan, K.E., & Brannon, E.M.(2006). The multisensory representation of number in infancy. Proceedings of the National Academy of Sciences of the United States of America,103, 3486-3489. Jordan, N.C., Hansen, N., Fuchs, L.S., Siegler, R.S., Gersten, R. et al.(2013). Developmental predictors of fraction concepts and procedures. Journal of Experimental Child Psychology,116, 45-58. Laski, E.V., & Siegler, R.S.(2007). Is 27 a big number? Correlational and causal connections among numerical categorization, number line estimation, and numerical magnitude comparison. Child Development, 78, 1723-1743. Laski, E.V., & Siegler, R.S.(2014). Learning from number board games:You learn what you encode. Developmental Psychology, 50, 853-864. Le Corre, M., & Carey, S.(2007). One, two, three, four, nothing more:An investigation of the conceptual sources of the verbal counting principles. Cognition, 105, 395-438. Lipton, J., & Spelke, E.S.(2003). Origins of number sense:Large number discrimination in human infants. Psychological Science,14, 396-401. Lourenco, S.F., & Longo, M.R.(2010). General magnitude representation in human infants. Psychological Science, 21, 873-881. Lourenco, S.F., & Longo, M.R. (2011). Origins and development of generalized magnitude representation. In S. Dehaene & E. Brannon (Eds.), Space, time, and number in the brain:Searching for the foundations of mathematical thought (pp.225-244). London:Elsevier. Lyons, I.M., Price, G.R., Vaessen, A., Blomert, L., & Ansari, D. (2014). Numerical predictors of arithmetic success ingrades 1-6. Developmental Science, 17, 714-726. Newcombe, N.S., Levine, S.C., & Mix, K.(2015). Thinking about quantity:The intertwined development of spatial and numerical cognition. Wiley Interdisciplinary Reviews:Cognitive Science,6, 491-505. Nieder, A. (2011). The neural code for numbers. In S. Dehaene & E. Brannon (Eds.), Space, time, and number in the brain:Searching for the foundations of mathematical thought (pp.103-118). London:Elsevier. Nys, J., Ventura, P., Fernandes, T., Querido, L., Leybaert, J., & Content, A. (2013). Does math education modify the approximate number system? A comparison of schooled and unschooled adults. Trends in Neuroscience and Education,2(1), 13-22. Park, J., & Brannon, E.M.(2013). Training the approximate number system improves math proficiency. Psychological Science,24, 2013-2019. Piazza, M., Pinel, P., Le Bihan, D., & Dehaene, S.(2007). A magnitude code common to numerosities and number symbols in human intraparietal cortex. Neuron,53, 293-305. Ramani, G.B., & Siegler, R.S.(2008). Promoting broad and stable improvements in low-income children's numerical knowledge through playing number board games. Child Development, 79, 375-394. Ritchie, S.J., & Bates, T.C.(2013). Enduring links from childhood mathematics and reading achievement to adult socioeconomic status. Psychological Science, 24, 1301-1308. Sadler, P.M., & Tai, R.H.(2007). The two high-school pillars supporting college science. Science, 317, 457-458. Siegler, R.S.(2016).Magnitude knowledge:the common core of numerical development. Developmental science, 19(3),341-361. Siegler, R. S., Booth, J.L.(2004). Development of numerical estimation in young children. Child Development, 75(2),428-444. Siegler, R.S., Duncan, G.J., Davis-Kean, P.E., Duckworth, K., Claessens, A. et al. (2012). Early predictors of high school mathematics achievement. Psychological Science, 23, 691-697. Siegler, R.S., & Mu, Y. (2008). Chinese children excel on novel mathematics problems even before elementary school. Psychological Science,19, 759-763. Siegler, R.S., & Pyke, A.A.(2013). Developmental and individual differences in understanding fractions. Developmental Psychology, 49, 1994-2004. Siegler, R.S., & Ramani, G.B.(2009). Playing linear number board games-but not circular ones improves low-income preschoolers' numerical understanding. Journal of Educational Psychology,101, 545-560. Siegler, R. S., Thompson, C. A., & Schneider, M. (2011). An integrated theory of whole number and fractions development. Cognitive Psychology, 62 (4), 273-296. Thompson, C.A., & Opfer, J.E.(2008). Costs and benefits of representational change:Effects of context on age and sex differences in symbolic magnitude estimation. Journal of Experimental Child Psychology, 101(1), 20-51. Thompson, C.A., & Opfer, J.E.(2010). How 15 hundred is like15 cherries:Effect of progressive alignment on representational changes in numerical cognition. Child Development, 81, 1768-1786. Torbeyns, J., Schneider, M., Xin, Z. Q., & Siegler, R. S.(2015). Bridging the gap:Fraction understanding is central to mathematics achievement in students from three different continents. Learning and Instruction, 37, 5-13. Vukovic, R.K., Fuchs, L.S., Geary, D.C., Jordan, N.C., Gersten, R. et al.(2014). Sources of individual differences in children's understanding of fractions. Child Development, 85, 1461-1476. Watts, T.W., Duncan, G.J., Siegler, R.S., & Davis-Kean, P.E.(2014). What's past is prologue:Relations between early mathematics knowledge and high school achievement. Educational Researcher, 43, 352-360. Xu, F.,& Arriaga, R.I.(2007). Number discrimination in 10-month-old infants. British Journal of Developmental Psychology, 25, 103-108. |