华东师范大学学报(教育科学版) ›› 2025, Vol. 43 ›› Issue (3): 95-109.doi: 10.16382/j.cnki.1000-5560.2025.03.008
郭丛斌, 武玮, 任静
接受日期:
2024-11-29
出版日期:
2025-03-01
发布日期:
2025-02-24
Congbin Guo, Wei Wu, Jing Ren
Accepted:
2024-11-29
Online:
2025-03-01
Published:
2025-02-24
摘要:
高考科目选择不仅影响学生的学业发展方向,还直接关系到我国科技人才的专业分布与未来储备。基于STEM管道理论,通过对全国七省市普通中学科学教育调查数据分析发现:活动课程和科技竞赛能促进学生选择物理科目组合,而统计调查则起到阻碍作用。主题班会和课外活动对学生选择物理科目组合的影响不明显。活动课程通过增加早期接触、职业意识和资源获取,提升学生选择物理科目组合的可能性。科技竞赛则主要通过增强早期接触和职业意识,增加学生选择物理科目组合的机会。相反,统计调查主要通过削弱职业意识和资源获取,降低学生选择物理科目组合的概率,且这种阻碍作用在县域高中尤为明显,而在地市级高中则略有促进作用。建议动态调整高中科学教育的实施方案,强化科学教育的专业性和个性化指导,增加科学教育资源投入,促进地区间科学教育的均衡发展。
郭丛斌, 武玮, 任静. 新高考改革背景下高中科学教育能否影响学生高考科目选择——基于STEM管道理论的实证研究[J]. 华东师范大学学报(教育科学版), 2025, 43(3): 95-109.
Congbin Guo, Wei Wu, Jing Ren. Whether High School Science Education Can Influence Students’ College Entrance Exam Subject Choices in the Context of the New College Entrance Exam Reform: An Empirical Study Based on the STEM Pipeline Theory[J]. Journal of East China Normal University(Educationa, 2025, 43(3): 95-109.
表 1
主要变量描述性统计和相关性分析"
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
1.物理科目组合选择 | 1 | ||||||||
2.活动课程 | 0.150** | 1 | |||||||
3.主题班会 | −0.003 | 0.527*** | 1 | ||||||
4.课外活动 | 0.003 | 0.634*** | 0.576*** | 1 | |||||
5.科技竞赛 | 0.107** | 0.605*** | 0.446*** | 0.592*** | 1 | ||||
6.统计调查 | −0.136** | 0.620*** | 0.480*** | 0.628*** | 0.695*** | 1 | |||
7.早期接触 | 0.208*** | 0.272*** | 0.203*** | 0.234*** | 0.238*** | 0.226*** | 1 | ||
8.职业意识 | 0.209*** | 0.240*** | 0.176*** | 0.206*** | 0.225*** | 0.216*** | 0.743*** | 1 | |
9.资源获取 | −0.005 | 0.536*** | 0.450*** | 0.461*** | 0.455*** | 0.463*** | 0.368*** | 0.310*** | 1 |
平均值 | 0.736 | 2.961 | 3.309 | 2.998 | 2.772 | 2.772 | 3.455 | 3.223 | 3.241 |
标注差 | 0.442 | 0.871 | 0.954 | 0.954 | 0.965 | 0.983 | 0.504 | 0.512 | 0. 741 |
表 5
全样本结构方程模型中介效应检验"
变量 | 路径 | 效应值 | 95% CI | |
高中科学教育 | 活动课程 | 直接效应 | 0.039*** | [0.023, 0.051] |
间接效应 | ||||
→早期接触→物理科目组合选择 | 0.048*** | [0.040, 0.056] | ||
→职业意识→物理科目组合选择 | 0.014*** | [0.009, 0.019] | ||
→资源获取→物理科目组合选择 | 0.032*** | [0.022, 0.042] | ||
总效应 | 0.131*** | [0.114, 0.138] | ||
主题班会 | 直接效应 | −0.020 | [−0.041, 0.001] | |
间接效应 | ||||
→早期接触→物理科目组合选择 | 0.025 | [−0.005, 0.029] | ||
→职业意识→物理科目组合选择 | 0.006 | [−0.002, 0.014] | ||
→资源获取→物理科目组合选择 | −0.020 | [−0.025, 0.065] | ||
总效应 | −0.009 | [−0.016, 0.002] | ||
课外活动 | 直接效应 | 0.004 | [−0.016, 0.026] | |
间接效应 | ||||
→早期接触→物理科目组合选择 | 0.048 | [−0.020, 0.116] | ||
→职业意识→物理科目组合选择 | 0.012 | [−0.002, −0.014] | ||
→资源获取→物理科目组合选择 | −0.004 | [−0.054, 0.050] | ||
总效应 | 0.060 | [−0.002, 0.139] | ||
科技 竞赛 | 直接效应 | 0.032*** | [0.026, 0.038] | |
间接效应 | ||||
→早期接触→物理科目组合选择 | 0.051*** | [0.044, 0.058] | ||
→职业意识→物理科目组合选择 | 0.013*** | [0.009, 0.018] | ||
→资源获取→物理科目组合选择 | 0.024 | [−0.022, 0.060] | ||
总效应 | 0.126** | [0.113, 0.139] | ||
统计调查 | 直接效应 | −0.043*** | [−0.056, −0.030] | |
间接效应 | ||||
→早期接触→物理科目组合选择 | −0.023 | [−0.044, 0.002] | ||
→职业意识→物理科目组合选择 | −0.042*** | [−0.047, −0.036] | ||
→资源获取→物理科目组合选择 | −0.064*** | [−0.096, −0.032] | ||
总效应 | −0.157*** | [−0.169, −0.145] |
表 7
分样本结构方程模型中介效应检验"
变量 | 路 径 | 地市级高中 | 县域高中 | ||||
效应值 | 95% CI | 效应值 | 95% CI | ||||
高中科学教育 | 活动课程 | 直接效应 | 0.035*** | [0.023, 0.047] | 0.027*** | [0.016, 0.038] | |
间接效应 | |||||||
→早期接触→物理科目组合选择 | 0.046*** | [0.040, 0.051] | 0.043** | [0.034, 0.052] | |||
→职业意识→物理科目组合选择 | 0.013*** | [0.009, 0.017] | 0.027*** | [0.023, 0.031] | |||
→资源获取→物理科目组合选择 | 0.036*** | [0.022, 0.049] | 0.031** | [0.020, 0.042] | |||
总效应 | 0.132*** | [0.008, 0.012] | 0.128*** | [0.022, 0.041] | |||
主题班会 | 直接效应 | −0.030 | [−0.068, 0.008] | −0.017 | [−0.022, 0.025] | ||
间接效应 | |||||||
→早期接触→物理科目组合选择 | 0.008 | [−0.004, 0.012] | 0.005 | [−0.001, 0.009] | |||
→职业意识→物理科目组合选择 | 0.009 | [−0.011, 0.020] | 0.011 | [−0.001, 0.021] | |||
→资源获取→物理科目组合选择 | −0.009 | [−0.019, 0.001] | 0.006 | [−0.001, 0.013] | |||
总效应 | −0.021 | [−0.047, 0.005] | 0.007 | [−0.002, 0.016] | |||
课外活动 | 直接效应 | 0.025 | [−0.023, 0.073] | 0.013 | [−0.020, 0.046] | ||
间接效应 | |||||||
→早期接触→物理科目组合选择 | 0.002 | [−0.001, 0.004] | 0.003 | [−0.001, 0.006] | |||
→职业意识→物理科目组合选择 | 0.008 | [−0.001, 0.017] | 0.016 | [ 0.004, 0.027] | |||
→资源获取→物理科目组合选择 | 0.007 | [−0.003, 0.009] | −0.001 | [−0.003, 0.001] | |||
总效应 | 0.043 | [−0.003, 0.050] | 0.031 | [−0.011, 0.072] | |||
科技竞赛 | 直接效应 | 0.042*** | [0.036, 0.049] | 0.035*** | [0.022, 0.048] | ||
间接效应 | |||||||
→早期接触→物理科目组合选择 | 0.047** | [0.034, 0.050] | 0.048** | [0.036, 0.060] | |||
→职业意识→物理科目组合选择 | 0.009*** | [0.003, 0.016] | 0.011*** | [0.007, 0.015] | |||
→资源获取→物理科目组合选择 | 0.034 | [−0.022, 0.089] | 0.020 | [−0.005, 0.010] | |||
总效应 | 0.130*** | [0.123, 0.137] | 0.114*** | [0.115, 0.133] | |||
统计调查 | 直接效应 | −0.016 | [−0.034, 0.003] | −0.091*** | [−0.034, −0.018] | ||
间接效应 | |||||||
→早期接触→物理科目组合选择 | 0.016 | [−0.002, 0.033] | 0.059** | [0.034, 0.083] | |||
→职业意识→物理科目组合选择 | 0.013*** | [0.004, 0.022] | −0.085*** | [−0.103, −0.067] | |||
→资源获取→物理科目组合选择 | 0.008*** | [0.004, 0.012] | −0.094** | [−0.099, −0.088] | |||
总效应 | 0.021** | [0.012, 0.030] | −0.211** | [−0.220, −0.131] |
方芳, 钟秉林. (2022). 家庭背景对高中学生高考科目选择的影响——基于浙江省的调查研究. 教育学报, (01), 126- 137. | |
焦以璇. (2024). 乡村科学教育短板如何补齐——借助各方资源做好中小学科学教育系列观察之三. 中国教育报, 2024-03-03 (02). | |
刘海峰, 韦骅峰, 季玟希. (2023). 家庭资本结构视角下高中生高考选科的影响因素. 高等教育研究, (01), 57- 67. | |
刘玉凡. (2023). 从山东投档线看专业冷热: 哪些专业跌落“神坛”?哪些专业正悄然崛起?取自半岛都市报((2023年7月20日): https://new.qq.com/rain/a/20230720A03STB00. | |
杨倩. (2022). 高考科目选择与高等教育机会均等——兼论弃考物理能否增加大学入学机会. 中国高教研究, (02), 29- 34+41. | |
张建珍, 梁晓雨. (2023). 新高考制度下家庭背景对高中生科目选择的影响分析. 华东师范大学学报(教育科学版), (06), 47- 58. | |
Abd-El-Khalick, F., & Lederman, N. G. (2023). Research on teaching, learning, and assessment of nature of science. Handbook of research on science education . New York : Routledge. | |
Archer, L., Dewitt, J., Osborne, J., Dillon, J., Willis, B., & Wong, B. (2012). Science Aspirations, Capital, and Family Habitus: How Families Shape Children's Engagement and Identification with Science. American Educational Research Journal, 49 (5), 881- 908.
doi: 10.3102/0002831211433290 |
|
Ashman, G., Kalyuga, S., & Sweller, J. (2020). Problem-solving or explicit instruction: Which should go first when element interactivity is high?. Educational Psychology Review, 32 (1), 229- 247.
doi: 10.1007/s10648-019-09500-5 |
|
Ateş H, Gündüzalp C. (2023). A unified framework for understanding teachers’ adoption of robotics in STEM education. Education and Information Technologies, 15, 1- 27. | |
Barlow D. (2014). The Case for STEM Education: Challenges and Opportunities. Education Digest, 79 (8), 71- 87. | |
Barney J. (1991). Competitive advantage. Journal of management, 17 (1), 99- 120.
doi: 10.1177/014920639101700108 |
|
Martín‐Páez, T., Aguilera, D., Perales‐Palacios, F. J., & Vílchez‐González, J. M. (2019). What are we talking about when we talk about STEM education? A review of literature. Science Education, 103 (4), 799- 822.
doi: 10.1002/sce.21522 |
|
Cannady, M. A., Greenwald, E., & Harris, K. N. (2014). Problematizing the STEM pipeline metaphor: Is the STEM pipeline metaphor serving our students and the STEM workforce. Science Education, 98 (3), 443- 460.
doi: 10.1002/sce.21108 |
|
Carlone, H. B., & Johnson, A. (2007). Understanding the science experiences of successful women of color: Science identity as an analytic lens. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 44 (8), 1187- 1218. | |
Chan, H. Y., Choi, H., Hailu, M. F., Whitford, M., & Duplechain DeRouen, S. (2020). Participation in structured STEM‐focused out‐of‐school time programs in secondary school: Linkage to postsecondary STEM aspiration and major. Journal of Research in Science Teaching, 57 (8), 1250- 1280.
doi: 10.1002/tea.21629 |
|
Davey, K. M. (2020). Organizational career development theory: Weaving individuals, organizations, and social structures. Oxford Handbook of Career Development. Oxford : Oxford University Press. | |
Dou, R., Hazari, Z., Dabney, K., Sonnert, G., & Sadler, P. (2019). Early informal STEM experiences and STEM identity: The importance of talking science. Science Education, 103 (3), 623- 637.
doi: 10.1002/sce.21499 |
|
English, L. D., & Watson, J. M. (2015). Exploring variation in measurement as a foundation for statistical thinking in the elementary school. International Journal of STEM Education, 2, 1- 20.
doi: 10.1186/s40594-014-0015-3 |
|
Furtak, E. M., & Penuel, W. R. (2019). Coming to terms: Addressing the persistence of “hands‐on” and other reform terminology in the era of science as practice. Science Education, 103 (1), 167- 186.
doi: 10.1002/sce.21488 |
|
Garfield, J., Hogg, B., Schau, C., & Whittinghill, D. (2002). First courses in statistical science: The status of educational reform efforts. Journal of Statistics Education, 10(2). | |
Godwin, A., Potvin, G., Hazari, Z., & Lock, R. (2016). Identity, critical agency, and engineering: An affective model for predicting engineering as a career choice. Journal of Engineering Education, 105 (2), 312- 340.
doi: 10.1002/jee.20118 |
|
Habig, B., Gupta, P., Levine, B., & Adams, J. (2020). An informal science education program’s impact on STEM major and STEM career outcomes. Research in Science Education, 50 (3), 1051- 1074.
doi: 10.1007/s11165-018-9722-y |
|
Ješková, Z., Lukáč, S., Šnajder, Ľ., Guniš, J., Klein, D., & Kireš, M. (2022). Active learning in STEM education with regard to the development of inquiry skills. Education Sciences, 12 (10), 686- 713.
doi: 10.3390/educsci12100686 |
|
Karahan, E., Bilici, S. C., & Ayçin, Ü. N. A. L. (2015). Integration of media design processes in science, technology, engineering, and mathematics (STEM) education. Eurasian Journal of Educational Research, 15 (60), 221- 240.
doi: 10.14689/ejer.2015.60.15 |
|
Kirchhoff, T., & Randler, C. (2023). Experimenting at an outreach science lab versus at school—Differences in students' basic need satisfaction, intrinsic motivation, and flow experience. Journal of Research in Science Teaching, 60 (2), 278- 301. | |
Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41 (2), 75- 86.
doi: 10.1207/s15326985ep4102_1 |
|
Kuchynka, S. L., Eaton, A., & Rivera, L. M. (2022). Understanding and addressing gender‐based inequities in STEM: Research synthesis and recommendations for US K‐12 education. Social Issues and Policy Review, 16 (1), 252- 288.
doi: 10.1111/sipr.12087 |
|
Lamb, R., Akmal, T., & Petrie, K. (2015). Development of a cognition‐priming model describing learning in a STEM classroom. Journal of Research in Science Teaching, 52 (3), 410- 437.
doi: 10.1002/tea.21200 |
|
Lent, R. W., & Brown, S. D. (2013). Social cognitive model of career self-management: toward a unifying view of adaptive career behavior across the life span. Journal of Counseling Psychology, 60 (4), 557.
doi: 10.1037/a0033446 |
|
Lin, P. Y., & Schunn, C. D. (2016). The dimensions and impact of informal science learning experiences on middle schoolers’ attitudes and abilities in science. International Journal of Science Education, 38 (17), 2551- 2572.
doi: 10.1080/09500693.2016.1251631 |
|
Lissitsa, S., & Chachashvili-Bolotin, S. (2022). Timing patterns for making STEM-related educational choices in academic education–findings of a narrative study. International Journal of Science Education, 44 (2), 223- 244.
doi: 10.1080/09500693.2021.2022806 |
|
Maltese, A. V., & Tai, R. H. (2010). Eyeballs in the Fridge: Sources of Early Interest in Science. International Journal of Science Education, 32 (5), 669- 685.
doi: 10.1080/09500690902792385 |
|
Maltese, A. V., & Tai, R. H. (2011). Pipeline persistence: Examining the association of educational experiences with earned degrees in STEM among US students. Science Education, 95 (5), 877- 907.
doi: 10.1002/sce.20441 |
|
McNeill, K. L., & Pimentel, D. S. (2010). Scientific discourse in three urban classrooms: The role of the teacher in engaging high school students in argumentation. Science Education, 94 (2), 203- 229.
doi: 10.1002/sce.20364 |
|
National Audit Office. (2018). Delivering STEM (science, technology, engineering and mathematics) skills for the economy. Victoria and London: National Audit Press Office. | |
National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. New York : National Academies Press. | |
National Science and Technology Council. (2018). Charting a course for success: America’s strategy for STEM education . National Science Teachers Association. | |
Oliveira, A., Feyzi Behnagh, R., Ni, L., Mohsinah, A. A., Burgess, K. J., & Guo, L. (2019). Emerging technologies as pedagogical tools for teaching and learning science: A literature review. Human Behavior and Emerging Technologies, 1 (2), 149- 160.
doi: 10.1002/hbe2.141 |
|
Sahin, A., Gulacar, O., & Stuessy, C. (2015). High school students’ perceptions of the effects of international science Olympiad on their STEM career aspirations and twenty-first century skill development. Research in Science Education, 45, 785- 805.
doi: 10.1007/s11165-014-9439-5 |
|
Smyrnaiou, Z., Georgakopoulou, E., & Sotiriou, S. (2020). Promoting a mixed-design model of scientific creativity through digital storytelling—the CCQ model for creativity. International Journal of STEM Education, 7, 1- 22.
doi: 10.1186/s40594-019-0200-5 |
|
Upadhyay, B. R. (2006). Using students' lived experiences in an urban science classroom: An elementary school teacher's thinking. Science Education, 90 (1), 94- 110.
doi: 10.1002/sce.20095 |
|
Wan, Z. H., Zhan, Y., & Zhang, Y. (2024). Positive or negative? The effects of scientific inquiry on science achievement via attitudes toward science. Science Education, 108 (1), 3- 24.
doi: 10.1002/sce.21825 |
|
Wong, B., Chiu, Y. L. T., Murray, Ó. M., & Horsburgh, J. (2022). End of the road? The career intentions of under-represented STEM students in higher education. International Journal of STEM Education, 9 (1), 51- 62.
doi: 10.1186/s40594-022-00366-8 |
|
Wright, J. D., & Marsden, P. V. (2010). Survey research and social science: History, current practice, and future prospects. In: Wright J, Marsden P, editors. Handbook of survey research. Bingley, UK: Emerald Group. | |
Young, J. R., Ortiz, N., & Young, J. L. (2017). STEMulating interest: A meta-analysis of the effects of out-of-school time on student STEM interest. International Journal of Education in Mathematics, Science and Technology, 5(1), 62—74. |
No related articles found! |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 125
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 246
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||