|
蒋里. (2023). AI驱动教育改革: ChatGPT/GPT的影响及展望. 华东师范大学学报(教育科学版), (07), 143- 150.
|
|
李海峰, 王炜, 李广鑫, 王媛. (2024). 智能助产术教学法——以“智能苏格拉底会话机器人”教学实践为例. 开放教育研究, (02), 89- 99.
|
|
卢宇, 余京蕾, 陈鹏鹤. (2024). 基于大模型的教学智能体构建与应用研究. 中国电化教育, (07), 99- 108.
|
|
梅培军. (2022). 深度阅读的实践原则与教学策略——共生理论的视角. 天津师范大学学报 (基础教育版), (06), 71- 75.
|
|
邱燕楠, 李政涛. (2023). 挑战·融合·变革: “ChatGPT与未来教育”会议综述. 现代远程教育研究, (03), 3- 12+21.
|
|
吴永和, 姜元昊, 陈圆圆, 张文轩. (2024). 大语言模型支持的多智能体: 技术路径、教育应用与未来展望. 开放教育研究, (05), 63- 75.
|
|
杨宗凯, 王俊, 吴砥, 陈旭. (2023). ChatGPT/生成式人工智能对教育的影响探析及应对策略. 华东师范大学学报(教育科学版), (07), 26- 35.
|
|
于济凡, 李睿淼, 李曼丽, 刘惠琴. (2024). 多智能体协同交互的高临场感在线学习环境构建. 现代教育技术, (12), 17- 26.
|
|
翟雪松, 季爽, 焦丽珍, 朱强, 王丽英. (2024). 基于多智能体的人机协同解决复杂学习问题实证研究. 开放教育研究, (03), 63- 73.
|
|
Biggs, J. B., & Collis, K. F. (2014). Evaluating the quality of learning: The SOLO taxonomy (Structure of the Observed Learning Outcome). New York: Academic Press.
|
|
Chang, C. C., & Hwang, G. J. (2024). Elevating EFL learners' professional English achievements and positive learning behaviours: A motivation model‐based digital gaming approach. Journal of Computer Assisted Learning, 40 (1), 176- 191.
|
|
Chen, Y., Zhang, X., & Hu, L. (2024). A progressive prompt-based image-generative AI approach to promoting students’ achievement and perceptions in learning ancient Chinese poetry. Educational Technology & Society, 27 (2), 284- 305.
|
|
Corlatescu, D. G., Watanabe, M., Ruseti, S., Dascalu, M., & McNamara, D. S. (2024). The automated model of comprehension version 4. 0–Validation studies and integration of ChatGPT. Computers in Human Behavior, 154, 108154.
|
|
Deng, R., Jiang, M., Yu, X., Lu, Y., & Liu, S. (2025). Does ChatGPT enhance student learning? A systematic review and meta-analysis of experimental studies. Computers & Education, 227, 105224.
|
|
Gronauer S, Diepold K. (2022). Multi-agent deep reinforcement learning: a survey. Artificial Intelligence Review, 55 (2), 895- 943.
|
|
Du, Y., Li, S., Torralba, A., Tenenbaum, J. B., & Mordatch, I. (2024). Improving Factuality and Reasoning in Language Models through Multiagent Debate. In Proceedings of the Forty-first International Conference on Machine Learning, 11733-11763.
|
|
Franklin, S., & Graesser, A. (1996). Is it an agent, or just a program? A taxonomy for autonomous agents. In Proceedings of the International Workshop on Agent Theories, Architectures, and Languages (pp. 21–35). Springer Berlin Heidelberg.
|
|
Guo, T., Chen, X., Wang, Y., Chang, R., Pei, S., Chawla, N. V., .. & Zhang, X. (2024). Large language model based multi-agents: a survey of progress and challenges. In Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence, 8048-8057.
|
|
Janbi, N., Katib, I., & Mehmood, R. (2023). Distributed artificial intelligence: Taxonomy, review, framework, and reference architecture. Intelligent Systems with Applications, 18, 200231.
|
|
Kasneci, E., et al. (2023). ChatGPT for good? On opportunities and challenges of large language models for education. Learning and individual differences, 103, 102274.
|
|
Keller, J. M. (1987). Strategies for stimulating the motivation to learn. Performance and instruction, 26 (8), 1- 7.
|
|
Keller, J. M. (2008). An integrative theory of motivation, volition, and performance. Technology, Instruction, Cognition, and Learning, 6(2), 79—104.
|
|
Lee, H. Y., Chen, P. H., Wang, W. S., Huang, Y. M., & Wu, T. T.. (2024). Empowering ChatGPT with guidance mechanism in blended learning: Effect of self-regulated learning, higher-order thinking skills, and knowledge construction. International Journal of Educational Technology in Higher Education, 21 (1), 1- 28.
|
|
Li, M., Chen, Y. T., Huang, C. Q., Hwang, G. J., & Cukurova, M. (2023). From motivational experience to creative writing: A motivational AR-based learning approach to promoting Chinese writing performance and positive writing behaviours. Computers & Education, 202, 104844.
|
|
Lin, Y. N., Hsia, L. H., & Hwang, G. J. (2021). Promoting pre-class guidance and in-class reflection: A SQIRC-based mobile flipped learning approach to promoting students’ billiards skills, strategies, motivation and self-efficacy. Computers & Education, 160, 104035.
|
|
Moulin, B., & Chaib-Draa, B. (1996). An overview of distributed artificial intelligence. Foundations of distributed artificial intelligence (pp.3—55). John Wiley & Sons.
|
|
Song, S. H., & Keller, J. M. (2001). Effectiveness of motivationally adaptive computer-assisted instruction on the dynamic aspects of motivation. Educational technology research and development, 49 (2), 5- 22.
|
|
Swan, M., Kido, T., Roland, E., & Santos, R. P. D. (2023). Math agents: Computational infrastructure, mathematical embedding, and genomics. Retrieved from https://arxiv.org/abs/2307.02502.
|
|
Wang, X., Zhong, Y., Huang, C., & Huang, X. (2024). ChatPRCS: A Personalized Support System for English Reading Comprehension based on ChatGPT. IEEE Transactions on Learning Technologies, 17, 1762- 1776.
|
|
Xi, Z., Chen, W., Guo, X., He, W., Ding, Y., Hong, B., .. & Gui, T. (2025). The rise and potential of large language model based agents: A survey. Science China Information Sciences, 68(2), 121101.
|
|
Xie, J., & Liu, C. C. (2017). Multi-agent systems and their applications. Journal of International Council on Electrical Engineering, 7 (1), 188- 197.
|
|
Zhang, D., & Perez-Paredes, P. (2021). Chinese postgraduate EFL learners’ self-directed use of mobile English learning resources. Computer Assisted Language Learning, 34 (8), 1128- 1153.
|
|
Zhao, R., Zhuang, Y., Xie, Z., & Philip, L. H. (2024). Facilitating self-directed language learning in real-life scene description tasks with automated evaluation. Computers & Education, 219, 105106.
|