邓猛, 潘剑芳. (2002). 论教育研究中的混合方法设计. 教育研究与实验, (03),56-61 付瑛, 周谊. (2004). 教育研究方法中定性研究与定量研究的比较. 中华医学教育探索杂志,3(02),9-11+21 国务院. (2017). 新一代人工智能发展规划. 取自中华人民共和国中央人民政府网站(2017年7月20日): http://www.gov.cn/home/2017-07/20/content_5212053.htm. 高潇怡. (2010). 论混合方法在高等教育研究中的具体应用. 国内高等教育教学研究动态, (03),9 何哲. (2015). 大数据战略上升为国家战略. 取自人民网(2015年11月8日): http://politics.people.com.cn/n/2015/1108/c1001-27790239.html. 黎荷芳. (2001). 浅析教育量化研究存在的问题及其正确应用. 吉林教育科学, (06),36-39 刘建设. (1999). 对我国教育量化研究的若干思考. 北京邮电大学学报(社会科学版), (02),22-25 卢克. (2016). 多层次模型(郑冰岛译). 上海: 上海人民出版社. 李宪印, 张宝芳, 姜丽萍. (2019). 大学生创新行为的构成因素及其实证研究. 教育研究, (04),91-100 诺克, 杨. (2012). 社会网络分析(李兰译). 上海: 格致出版社. 佟庆伟. (2004). 论量化研究方法在教育科研中的应用. 教育探索, (11),24-25 田虎伟. (2007a). 混和方法研究——美国教育研究方法的一种新范式. 比较教育研究,28(01),12-17 唐涌. (2015). 混合方法研究——美国教育研究方法论的新取向. 外国教育研究, (02),12-21 吴战杰, 秦健. (2003). Agent技术及其在网络教育中的应用研究. 电化教育研究, (03),32-36 谢美华. (2005). 浅评定量研究方法及其在我国教育研究中的应用. 南昌: 江西师范大学硕士学位论文. 向蓉. (2019). 研究方法的发展及其在基础教育研究中的应用. 现代教育科学, (07),33-39 易红梅, 何婧, 张林秀. (2019). 有条件的现金转移支持承诺对贫困学生高中完成情况的影响研究. 北京大学教育评论,17(02),149-166 余胜泉. (2018). 人工智能+教育. 北京: 北京师范大学出版社. 袁振国. (2017). 实证研究是教育学走向科学的必要途径. 华东师范大学学报(教育科学版),35(03),4-17+168 张东辉. (2013). 美国教育研究方法论的最新进展:混合法研究的兴起与应用. 教育研究与实验, (04),9-12 张绘. (2012). 混合研究方法的形成、研究设计与应用价值——对“第三种教育研究范式”的探析. 复旦教育论坛, (05),53-59 朱军文, 马银琦. (2020). 教育实证研究这五年: 特征、趋势及展望. 华东师范大学学报(教育科学版), (9),16-35 Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to Meta-Analysis. United Kingdom: Wiley Press. Cheung, M. W-L. (2015). Meta-Analysis: A Structural Equation Modeling Approach (pp. 1- 152). New York: Wiley Press. Creswell, J. W. (2015). A Concise Introduction to Mixed Methods Research. Sydney: SAGE Publications. Creswell, J. W., & Clark, P. V. L. (2018). Designing and Conducting Mixed Methods Research. Sydney: SAGE Publications. Geldhof, G. J., Preacher, K. J., & Zyphur, M. J. (2014). Reliability estimation in a multilevel confirmatory factor analysis framework. Psychological Methods, 19(1), 72-91 Gilbert, N. (2020). Agent-Based Models, Second Edition. London: SAGE Publications. Greene, J. C. (2012). Engaging critical issues in social inquiry by mixing methods. American Behavioral Scientist, 56, 755-773 Hennig, C., Meila, M., Murtagh, F., & Rocci, R. (2016). Handbook of Cluster Analysis. Boca Raton: CRC Press. Lv, J., & Maeda, Y. (2020). Evaluation of the efficacy of meta-analytic structural equation modeling with missing correlations. Structural Equation Modeling: A Multidisciplinary Journal, 27(3), 414-437 Lv, J., Liu, Q., Zeng, X., OEI, T. P. S., Liu, Y., Xu, K., Sun, W., Hou, H., & Liu, J. (2020). The effect of four immeasurable meditations on depressive symptoms: a systematic review and meta-analysis. Clinical Psychology Review, 76, 101814 MacKinnon, D. P., & Valente, M. J. (2014). Mediation from multilevel to structural equation modeling. Annals of Nutrition and Metabolism, 65(2–3), 198-204 Mcintyre, L. J. (2003). Need to Know: Social Science Research Methods. McGram Hill: München. Moeyaert, M. (2019). Quantitative synthesis of research evidence: multilevel meta-analysis. Behavioral Disorders, 44(4), 241-256 Muthén, B., du Toit, S.H.C., & Spisic, D. (1997). Robust Inference Using Weighted Least Squares and Quadratic Estimating Equations in Latent Variable Modeling with Categorical and Continuous Outcomes. Unpublished technical report. Preacher, K. J., Zhang, Z., & Zyphur, M. J. (2016). Multilevel structural equation models for assessing moderation within and across levels of analysis. Psychological Methods, 21(2), 189-205 Rabe-Hesketh, S., Skrondal, A., & Zheng, X. (2007). Multilevel Structural Equation Modeling. In S. Lee (Ed.), Handbook of Latent Variable and Related Models (pp. 209–227). Amsterdam: Elsevier. Ryu, E. (2014). Model fit evaluation in multilevel structural equation models. Frontiers in Psychology, 5, 81 Shumway, R. H., & David, S. S. (2011). Time Series Analysis and Its Applications with R Examples, Third Edition. Switzerland: Springer Science+Business Media. Silva, B. C., Bosancianu, C. M., & Littvay, L. (2019). Multilevel Structural Equation Modeling. Germany: SAGE Publications. Teddlie, C., & Tashakkori, A. (2012). Common “core” characteristics of mixed methods research: a review of critical issues and call for greater convergence. American Behavioral Scientist, 56, 774-788 van den Noortgate, W., & Onghena, P. (2003). Multilevel meta-analysis: a comparison with traditional meta-analytical procedures. Educational and Psychological Measurement, 65(5), 765-790 van den Noortgate, W., & Onghena, P. (2008). A multilevel meta-analysis of single-subject experimental design studies. Evidence-Based Communication Assessment and Intervention, 2(3), 142-151 van der Linden, W. J. (2016). Handbook of Item Response Theory: Volume 1, Models. Boca Raton: CRC Press. van der Linden, W. J. (2017). Handbook of Item Response Theory: Volume 2, Statistical Tools. Boca Raton: CRC Press. Yue, C., & Xu, X. (2020). Review of quantitative methods used in Chinese educational research, 1978-2018. ECNU Review of Education, 2(4), 515-543
|