|
邓静. (2013). 机器人课堂教学对小学生创新能力培养的研究. 成都: 四川师范大学, 47−48.
|
|
董翠敏, 刘永强 以机器人教育为平台培养大学生创新意识和能力 实验室研究与探索 2011 09 257 258+334 董翠敏, 刘永强. (2011). 以机器人教育为平台培养大学生创新意识和能力. 实验室研究与探索,(09),257—258+334.
|
|
甘秋玲 等 创新素养: 21 世纪核心素养 5C 模型之三 华东师范大学学报 (教育科学版) 2020 2 57 70 甘秋玲 等. (2020). 创新素养: 21 世纪核心素养 5C 模型之三. 华东师范大学学报 (教育科学版),(2),57—70.
|
|
侯浩翔 智能时代高校创新人才培养的实然困境与应然转向 中国电化教育 2019 06 21 28 侯浩翔. (2019). 智能时代高校创新人才培养的实然困境与应然转向. 中国电化教育,(06),21—28.
doi: 10.3969/j.issn.1006-9860.2019.06.004
|
|
林崇德 创造性人才·创造性教育·创造性学习 中国教育学刊 2000 1 5 8 林崇德. (2000). 创造性人才·创造性教育·创造性学习. 中国教育学刊,(1),5—8.
doi: 10.3969/j.issn.1002-4808.2000.01.002
|
|
林崇德. (2009). 创新人才与教育创新研究. 北京: 经济科学出版社, 2; 121−132.
|
|
罗杰, 冷卫东. (2013). 系统评价: Meta分析理论与实践. 北京: 军事医学科学出版社, 196−201.
|
|
王小根, 张爽 面向创客教育的中小学机器人教学研究 现代教育技术 2016 26 8 116 121 王小根, 张爽. (2016). 面向创客教育的中小学机器人教学研究. 现代教育技术,26(8),116—121.
doi: 10.3969/j.issn.1009-8097.2016.08.017
|
|
谢幼如, 刘嘉欣, 孙宁蔚, 等 智慧学习环境下学生科学探究心智技能的培养 开放教育研究 2016 02 106 114 谢幼如, 刘嘉欣, 孙宁蔚, 等. (2016). 智慧学习环境下学生科学探究心智技能的培养. 开放教育研究,(02),106—114.
|
|
辛倩倩. (2019). 基于mBlock图形化编程软件的教学应用研究. 西安: 陕西师范大学, 42−43.
|
|
朱丽彬, 金炳尧 Scratch程序设计课教学实践研究——基于体验学习圈的视角 现代教育技术 2013 23 7 30 33 朱丽彬, 金炳尧. (2013). Scratch程序设计课教学实践研究—基于体验学习圈的视角. 现代教育技术,23(7),30—33.
doi: 10.3969/j.issn.1009-8097.2013.07.006
|
|
Amabile T M A model of creativity and innovation in organizations Research in organizational behavior 1988 10 1 123 167 Amabile T M. (1988). A model of creativity and innovation in organizations. Research in organizational behavior, 10(1), 123—167.
|
|
Banerjee, Banny, and Theo Gibbs(2016). Teaching the Innovation Methodology at the Stanford d. school. Creating Innovation Leaders. Springer, Cham. 163−174.
|
|
Benitti, F. B. V. Exploring the educational potential of robotics in schools: A systematic review Computers & Education 2012 58 3 978 988 Benitti, F. B. V. (2012). Exploring the educational potential of robotics in schools: A systematic review. Computers & Education, 58(3), 978—988.
|
|
Bers, M. U., Flannery, L., Kazakoff, E. R., et al Computational thinking and tinkering: Exploration of an early childhood robotics curriculum Computers & Education 2014 72 145 157 Bers, M. U., Flannery, L., Kazakoff, E. R., et al. (2014). Computational thinking and tinkering: Exploration of an early childhood robotics curriculum. Computers & Education, 72, 145—157.
|
|
Cavas, B., Kesercioglu, T., Holbrook, J., et al(2012). The effects of robotics club on the students’ performance on science process & scientific creativity skills and perceptions on robots, human and society[C]. Proceedings of 3rd International Workshop teaching robotics, teaching with robotics integrating robotics in school curriculum. 40−50.
|
|
Csikszentmihalyi, M.(1999). Implications of a Systems Perspective for the Study of Creativity. Handbook of Creativity. UK: Cambridge University Press, 313−335.
|
|
Eguchi, A.(2016). RoboCupJunior for promoting STEM education, 21st century skills, and technological advancement through robotics competition. Robotics and Autonomous Systems, 75: 692−699.
|
|
Guildford, J. P The nature of human intelligence American Educational Research Journal 1967 5 2 249 256 Guildford, J. P. (1967). The nature of human intelligence. American Educational Research Journal, 5(2), 249—256.
|
|
Hunter, J. E., Schmidt, F. L. Methods of meta-analysis: Correcting error and bias in research findings Sage Publications 2004 396 Hunter, J. E., Schmidt, F. L. (2004). Methods of meta-analysis: Correcting error and bias in research findings. Sage Publications, 396.
|
|
James, R. Morgan, April M., Moon, Luciana,R.(2013). Barroso, Engineering BetterProjects, Chapter, STEM Project-Based Learning. Sense Publishers, 30−33.
|
|
Jonassen, D. H. Thinking Technology: Toward a Constructivist Design Model Educational Technology 1994 34 34 37 Jonassen, D. H. (1994). Thinking Technology: Toward a Constructivist Design Model. Educational Technology, 34, 34—37.
|
|
Kahn, P. H., Kanda, T., Ishiguro, H., et al(2016). Human creativity can be facilitated through interacting with a social robot. 2016 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI). IEEE, 173−180.
|
|
Kolb, D. A. Experiential learning: Experience as the source of learning and development New Jersey: FT press 2014 21 25 Kolb, D. A. (2014). Experiential learning: Experience as the source of learning and development. New Jersey: FT press, 21—25.
|
|
Kozbelt, B. A., Beghetto, R. A. &Runco, M. A(2010). Theories of creativity. New York: Cambridge University Press, 321−447.
|
|
Lindh, J., Holgersson, T.(2007). Does lego training stimulate pupils’ ability to solve logical problems?Computers & education, 49(4): 1097−1111.
|
|
Masril, M., Hendrik, B., Fikri, H. T., et al The Effect of Lego Mindstorms as an Innovative Educational Tool to Develop Students’ Creativity Skills for a Creative Society Journal of Physics: Conference Series. IOP Publishing 2019 1339 1 1 9 Masril, M., Hendrik, B., Fikri, H. T., et al. (2019). The Effect of Lego Mindstorms as an Innovative Educational Tool to Develop Students’ Creativity Skills for a Creative Society. Journal of Physics: Conference Series. IOP Publishing, 1339(1), 1—9.
|
|
Nemiro, J., Larriva, C., Jawaharlal, M. Developing creative behavior in elementary school students with robotics The Journal of Creative Behavior 2017 51 1 70 90 Nemiro, J., Larriva, C., Jawaharlal, M. (2017). Developing creative behavior in elementary school students with robotics. The Journal of Creative Behavior, 51(1), 70—90.
doi: 10.1002/jocb.87
|
|
Park, I., Kim, D., Oh, J., et al Learning effects of pedagogical robots with programming in elementary school environments in Korea Indian Journal of Science and Technology 2015 8 26 1 5 Park, I., Kim, D., Oh, J., et al. (2015). Learning effects of pedagogical robots with programming in elementary school environments in Korea. Indian Journal of Science and Technology, 8(26), 1—5.
|
|
Sternberg, Robert, J. Beyond IQ: A triarchic theory of human intelligence CUP Archive 1985 45 68 Sternberg, Robert, J. (1985). Beyond IQ: A triarchic theory of human intelligence. CUP Archive, 45—68.
|
|
Sullivan, F. R. Robotics and science literacy: Thinking skills, science process skills and systems understanding Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching 2008 45 3 373 394 Sullivan, F. R. (2008). Robotics and science literacy: Thinking skills, science process skills and systems understanding. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 45(3), 373—394.
|
|
Torrance, E. P.(1993). Understanding creativity: Where to start?Psychological Inquiry, 4(3), 232−234.
|
|
Urban, K. K. On the development of creativity in children Creativity Research Journal 1991 4 2 177 191 Urban, K. K. (1991). On the development of creativity in children. Creativity Research Journal, 4(2), 177—191.
doi: 10.1080/10400419109534384
|
|
Williams, D. C., Ma, Y., Prejean, L., et al Acquisition of physics content knowledge and scientific inquiry skills in a robotics summer camp Journal of research on Technology in Education 2007 40 2 201 216 Williams, D. C., Ma, Y., Prejean, L., et al. (2007). Acquisition of physics content knowledge and scientific inquiry skills in a robotics summer camp. Journal of research on Technology in Education, 40(2), 201—216.
doi: 10.1080/15391523.2007.10782505
|
|
Yang, Y. T. C., Chang, C. H. Empowering students through digital game authorship: Enhancing concentration, critical thinking, and academic achievement Computers & Education 2013 68 334 344 Yang, Y. T. C., Chang, C. H. (2013). Empowering students through digital game authorship: Enhancing concentration, critical thinking, and academic achievement. Computers & Education, 68, 334—344.
|