|
鲍宇, 孟凡荣, 张艳群 “阶梯式”引导的计算思维自主养成模式 电化教育研究 2015 6 87 92 鲍宇, 孟凡荣, 张艳群. (2015). “阶梯式”引导的计算思维自主养成模式. 电化教育研究,(6),87—92.
|
|
郭守超, 周睿, 邓常梅, 狄长艳, 周庆国 基于App Inventor和计算思维的信息技术课堂教学研究 中国电化教育 2014 3 91 96 郭守超, 周睿, 邓常梅, 狄长艳, 周庆国. (2014). 基于App Inventor和计算思维的信息技术课堂教学研究. 中国电化教育,(3),91—96.
doi: 10.3969/j.issn.1006-9860.2014.03.016
|
|
胡典顺, 雷沛瑶, 刘婷 数学核心素养的测评: 基于PISA测评框架与试题设计的视角 教育测量与评价 2018 10 41 46+65 胡典顺, 雷沛瑶, 刘婷. (2018). 数学核心素养的测评: 基于PISA测评框架与试题设计的视角. 教育测量与评价,(10),41—46+65.
|
|
刘儒德 问题式学习: 一条集中体现建构主义思想的教学改革思路 教育理论与实践 2001 5 53 56 刘儒德. (2001). 问题式学习: 一条集中体现建构主义思想的教学改革思路. 教育理论与实践,(5),53—56.
|
|
任友群, 黄荣怀 高中信息技术课程标准修订说明 高中信息技术课程标准修订组 中国电化教育 2016 12 1 3 任友群, 黄荣怀. (2016). 高中信息技术课程标准修订说明 高中信息技术课程标准修订组. 中国电化教育,(12),1—3.
doi: 10.3969/j.issn.1006-9860.2016.12.002
|
|
任友群, 隋丰蔚, 李锋 数字土著何以可能?——也谈计算思维进入中小学信息技术教育的必要性和可能性 中国电化教育 2016 1 1 8 任友群, 隋丰蔚, 李锋. (2016). 数字土著何以可能?—也谈计算思维进入中小学信息技术教育的必要性和可能性. 中国电化教育,(1),1—8.
doi: 10.3969/j.issn.1006-9860.2016.01.001
|
|
吴刚 基于问题式学习模式(PBL)的述评 陕西教育: 高教版 2012 4 3 7 吴刚. (2012). 基于问题式学习模式(PBL)的述评. 陕西教育: 高教版,(4),3—7.
doi: 10.3969/j.issn.1002-2058.2012.04.002
|
|
余胜泉, 胡翔 STEM教育理念与跨学科整合模式 开放教育研究 2015 4 13 22 余胜泉, 胡翔. (2015). STEM教育理念与跨学科整合模式. 开放教育研究,(4),13—22.
|
|
张蕾 面向计算思维的WPBL教学模式研究 电化教育研究 2014 3 100 105 张蕾. (2014). 面向计算思维的WPBL教学模式研究. 电化教育研究,(3),100—105.
|
|
Barcelos, T. S., Muñoz, R., Villarroel, R., Merino, E., & Silveira, I. F Mathematics Learning through Computational Thinking Activities: A Systematic Literature Review Journal of Universal Computer Science 2018 24 7 815 845 Barcelos, T. S., Muñoz, R., Villarroel, R., Merino, E., & Silveira, I. F. (2018). Mathematics Learning through Computational Thinking Activities: A Systematic Literature Review. Journal of Universal Computer Science, 24(7), 815—845.
|
|
Barr, V., & Stephenson, C Bringing computational thinking to k-12: what is involved and what is the role of the computer science education community? ACM Inroads 2011 2 1 48 54 Barr, V., & Stephenson, C. (2011). Bringing computational thinking to k-12: what is involved and what is the role of the computer science education community?. ACM Inroads, 2(1), 48—54.
doi: 10.1145/1929887.1929905
|
|
Barrows, H. S A taxonomy of problem-based learning methods Medical Education 1986 20 6 481 486 Barrows, H. S. (1986). A taxonomy of problem-based learning methods. Medical Education, 20(6), 481—486.
doi: 10.1111/j.1365-2923.1986.tb01386.x
|
|
Barrows, H. S, Bennett, K The diagnostic (problem-solving) skill of the neurologist: Experimental studies and their implications for neurological training JAMA Neurology 1972 26 3 273 277 Barrows, H. S, Bennett, K. (1972). The diagnostic (problem-solving) skill of the neurologist: Experimental studies and their implications for neurological training. JAMA Neurology, 26(3), 273—277.
|
|
Bell T., & Vahrenhold J. (2018). CS Unplugged—How is it used, and does it work?. H.-J. B ̈ockenhauer et al. (Eds.): Hromkoviˇc Festschrift, LNCS 11011, 497−521.
|
|
Brennan, K., Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. Proceedings of the 2012 annual meeting of the American Educational Research Association, Vancouver: SAGE press, 1−25.
|
|
Costa, E. J. F., Campos, L. M. R. S., & Guerrero, D. D. S. (2017). Computational thinking in mathematics education: A joint approach to encourage problem-solving ability. 2017 IEEE Frontiers in Education Conference (FIE). IEEE, 1−8.
|
|
Hung, W The 3C3R model: A conceptual framework for designing problems in PBL Interdisciplinary Journal of Problem-based Learning 2006 1 1 55 77 Hung, W. (2006). The 3C3R model: A conceptual framework for designing problems in PBL. Interdisciplinary Journal of Problem-based Learning, 1(1), 55—77.
|
|
ISTE. (2011). Computational Thinking (Learner). Retrieved from https://www.iste.org/standards/iste-standards-for-computational-thinking.
|
|
Korkmaz, Ö., Çakir, R., & Özden, M.Y A validity and reliability study of the computational thinking scales (cts) Computers in Human Behavior 2017 72 558 569 Korkmaz, Ö., Çakir, R., & Özden, M.Y. (2017). A validity and reliability study of the computational thinking scales (cts). Computers in Human Behavior, 72, 558—569.
doi: 10.1016/j.chb.2017.01.005
|
|
Kotsopoulos, D., Floyd, L., Khan, S., Namukasa, I. K., Somanath, S., & Weber, J., et al A pedagogical framework for computational thinking Digital Experiences in Mathematics Education 2017 3 2 154 171 Kotsopoulos, D., Floyd, L., Khan, S., Namukasa, I. K., Somanath, S., & Weber, J., et al. (2017). A pedagogical framework for computational thinking. Digital Experiences in Mathematics Education, 3(2), 154—171.
doi: 10.1007/s40751-017-0031-2
|
|
Kwak, M., Yurov K.M., Floyd, K.S A 3D learning game to foster computational thinking in k-12 education Issues in Information Systems 2015 16 20 29 Kwak, M., Yurov K.M., Floyd, K.S. (2015). A 3D learning game to foster computational thinking in k-12 education. Issues in Information Systems, 16, 20—29.
|
|
Lye, S. Y., & Koh, J. H. L Review on teaching and learning of computational thinking through programming: what is next for k-12? Computers in Human Behavior 2014 41 51 61 Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through programming: what is next for k-12?. Computers in Human Behavior, 41, 51—61.
doi: 10.1016/j.chb.2014.09.012
|
|
K–12 Computer Science Framework Steering Committee, (2016). K-12 Computer science framework. Retrieved from https://k12cs.org/.
|
|
PISA 2021 Mathematics Framework , (2018). Retrieved from https://pisa2021-maths.oecd.org/#Overview..
|
|
Pérez, A A Framework for Computational Thinking Dispositions in Mathematics Education Journal for Research in Mathematics Education 2018 49 4 424 461 Pérez, A. (2018). A Framework for Computational Thinking Dispositions in Mathematics Education. Journal for Research in Mathematics Education, 49(4), 424—461.
doi: 10.5951/jresematheduc.49.4.0424
|
|
Polya, G. (1978). How to Solve It (second edition). Princeton University Press.
|
|
Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & Clark, D Integrating computational thinking with k-12 science education using agent-based computation: a theoretical framework Education & Information Technologies 2013 18 351 380 Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & Clark, D. (2013). Integrating computational thinking with k-12 science education using agent-based computation: a theoretical framework. Education & Information Technologies, 18, 351—380.
doi: 10.1007/s10639-012-9240-x
|
|
Shute, V. J., Sun, C., & Asbell-Clarke, J Demystifying computational thinking Educational Research Review 2017 22 142 158 Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research Review, 22, 142—158.
doi: 10.1016/j.edurev.2017.09.003
|
|
Sung, W., Ahn J., Black, J.B Introducing Computational Thinking to Young Learners: Practicing Computational Perspectives Through Embodiment in Mathematics Education Technology, Knowledge and Learning 2017 22 443 463 Sung, W., Ahn J., Black, J.B. (2017). Introducing Computational Thinking to Young Learners: Practicing Computational Perspectives Through Embodiment in Mathematics Education. Technology, Knowledge and Learning, 22, 443—463.
doi: 10.1007/s10758-017-9328-x
|
|
Weintrop, D., Beheshti, E., Horn, M., Orton, K., & Wilensky, U Defining computational thinking for mathematics and science classrooms Journal of Science Education and Technology 2016 25 1 127 147 Weintrop, D., Beheshti, E., Horn, M., Orton, K., & Wilensky, U. (2016). Defining computational thinking for mathematics and science classrooms. Journal of Science Education and Technology, 25(1), 127—147.
doi: 10.1007/s10956-015-9581-5
|
|
Wing, J. M Computational thinking Communications of the ACM 2006 49 3 33 35 Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33—35.
doi: 10.1145/1118178.1118215
|
|
Yadav, A., Hong, H., Stephenson, C Computational Thinking for All: Pedagogical Approaches to Embedding 21st Century Problem Solving in K-12 Classrooms Tech Trends 2016 60 6 565 568 Yadav, A., Hong, H., Stephenson, C. (2016). Computational Thinking for All: Pedagogical Approaches to Embedding 21st Century Problem Solving in K-12 Classrooms. Tech Trends, 60(6), 565—568.
doi: 10.1007/s11528-016-0087-7
|