华东师范大学学报(教育科学版) ›› 2026, Vol. 44 ›› Issue (2): 1-31.doi: 10.16382/j.cnki.1000-5560.2026.02.001

• 特稿 •    

走向科学的和多用途的“创新人才识别/培养测评体系”:理论架构与策略分析

戴耘1, 雷维娜2, 朱琳3   

  1. 1. 纽约州立大学-奥尔伯尼校区教育与咨询心理学系,纽约奥尔伯尼 12222
    2. 山西运城学院教育与心理科学系,山西运城 044011
    3. 纽约州立大学-奥尔伯尼校区教育学院,纽约奥尔伯尼 12222
  • 出版日期:2026-02-01 发布日期:2026-01-26
  • 基金资助:
    全国教育科学规划教育部重点项目“新时代青少年社会责任感形成机制及培育研究”(DEA240365)。本文还得到“深圳零一学院”的资助。声明:本文作者表达的完全是自己的观点,其中的错误由作者承担责任,与资助方无关。

Toward a Scientific, Multi-Purpose System of Assessment for Identifying and Nurturing Creative Talent

Yun Dai David1, Weina Lei2, Lin Zhu3   

  1. 1. Department of Educational and Counseling Psychology, State University of New York-Albany, Albany, New York, 12222, USA
    2. Department of Educational and Psychology Science, Yuncheng University, Yuncheng, Shanxi, 044000, China
    3. Department of Education Theory & Practice, State University of New York-Albany, Albany, New York, 12222, USA
  • Online:2026-02-01 Published:2026-01-26

摘要:

创新人才培养在基础教育和高等教育中正如火如荼地展开,但是,从识别方法到培养效果,测评和评价如何有效进行,依然缺乏一种坚实的理论支撑和方法论指导。本文提出一个在发展科学基础上建立的创新人才发展的三阶段理论框架,它的特点是用“近侧过程”理论和“动态发展”测评方法论指导测评和评价实践。本文进一步提出五种“测评场景”(选拔,诊断,培养,咨询,自测),每种场景都有自己的情境、目标、测评重点和手段。本文的基本观点是,测评和评价应该和人才培养相辅相成,直接参与培养过程,直接助力人才的成长。为此,本文展望在人工智能的加持下,建立一个辅助个人自主学习、自我提升的测评/培养技术平台的前景,并提出实现这一平台与人才培养手段的良性互动,形成闭环的可能途径。

关键词: 创新人才, 近侧过程, 人才测评, 发展阶段, 动态-静态测评, 评价场景, 人工智能, 自主学习, 测评技术平台

Abstract:

The nurturing of creative talent in basic and higher education has been a burgeoning movement in China. However, there is a lack of solid theoretical foundation and methodological guidance as to how talent identification and learning process evaluation can be done. This article proposes a three-phase theoretical framework of creative talent development based on developmental science. It uses the framing concepts of “proximal processes” and “dynamic changes” for situated appraisals and decision-making. It further proposes five application scenarios (selection, diagnosis, nurturing, counseling, and self-assessment), each carrying its own objectives, foci, and methods. The main argument is that assessment and evaluation need to go hand-in-hand with educational activities so that they become an integral part of nurturing creative talent and supporting optimal development. In this spirit, with the support of AI, we look forward to a future when a self-directed learning can be enhanced with an automated assessment/guidance system, and many students can learn to develop an innovative edge and make creative contributions in their own ways.

Key words: creative talent, proximal processes, talent assessment, development stage, dynamic vs. static assessment, evaluation scenario, artificial intelligence, independent learning, technology platform for assessment